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Summary	

The	 instructions	 for	when	and	where	each	of	 the	approximately	20,000	human	protein-

coding	genes	is	to	be	expressed	are	encoded	in	the	DNA	sequences	of	transcriptional	enhancers.	

Enhancers	are	genomic	non-coding	cis-regulatory	elements	that	act	as	on-off	switches	of	gene	

transcription.	The	vast	majority	of	disease-associated	mutations	fall	into	the	non-coding	part	of	

the	 genome	 and	 appear	 to	 be	 particularly	 enriched	 in	 enhancers	 and	 affect	 gene	 regulation.	

However,	despite	the	importance	of	enhancers	for	development	and	disease,	deciphering	the	link	

between	the	sequence	of	an	enhancer	and	its	regulatory	activity	has	remained	one	of	the	greatest	

challenges	in	biology,	and	neither	predicting	enhancer	activity	nor	designing	synthetic	enhancers	

with	specific	properties	has	been	achieved.	

The	 aim	 of	 this	 PhD	 thesis	was	 to	 achieve	 a	 better	 understanding	 of	 the	 cis-regulatory	

information	encoded	in	enhancer	sequences	by	integrating	deep	learning	algorithms	with	high-

throughput	 enhancer	 testing	 and	 systematic	 enhancer	 sequence	 perturbation	 assays,	 using	

Drosophila	melanogaster	S2	cells	as	the	main	model	system.	

First,	I	developed	a	deep	learning	model,	DeepSTARR,	that	predicts	the	enhancer	activity	of	

any	DNA	sequence,	its	critical	nucleotides,	and	enables	the	design	of	synthetic	enhancers	de	novo.	

I	 applied	 this	 approach	 to	Drosophila	 S2	 cells	 and	 trained	 DeepSTARR	 to	 learn	 its	 enhancer	

sequence	code	with	increased	accuracy.	In	a	second	step,	I	interpreted	the	model	and	revealed	

long-sought-after	 sequence	 rules	 for	 enhancers,	 including	 the	 importance	 of	 motif-flanking	

nucleotides	 and	 transcription	 factor	 motif-motif	 distances.	 We	 validated	 these	 rules	

experimentally	 and	 demonstrated	 their	 conservation	 in	 human	 enhancers.	 Finally,	 we	 also	

designed	 and	 functionally	 validated	 synthetic	 enhancers	 with	 desired	 activities,	 not	 only	

demonstrating	 the	 validity	 of	 the	model	 and	 its	 rules	 but	 also	 illustrating	 the	 power	 of	 such	

approaches	for	synthetic	biology.	

To	further	understand	the	rules	of	enhancer	sequence	syntax,	we	designed	a	 large-scale	

enhancer	mutagenesis	project.	The	resultant	enhancer	activity	changes	validated	the	predictive	

sequence	 features	 of	 DeepSTARR	 and	 revealed	 that	 enhancers	 display	 constrained	 sequence	

flexibility	–	only	a	specific	but	still	diverse	set	of	sequences	and	TF	motifs	can	function	at	a	given	

position.	 This	 activity	 of	 motifs	 at	 specific	 positions	 is	 strongly	 determined	 by	 the	 enhancer	

sequence	context,	namely	the	flanking	sequence,	presence	and	diversity	of	other	motif	types,	and	

distance	between	motifs.	

Altogether,	my	work	could	provide	the	basis	of	current	and	future	efforts	to	understand	the	

regulatory	information	encoded	in	the	human	genome,	predict	the	impact	of	genomic	variation	

on	 function	 and	 disease,	 and	 of	 engineering	 synthetic	 enhancers	 for	 biotechnological	

applications,	especially	gene	therapy.	 	
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Zusammenfassung	

Die	genauen	 Informationen	darüber	wann	und	wo	 jedes	der	etwa	20	000	menschlichen	

proteinkodierenden	Gene	exprimiert	werden	soll,	sind	in	den	DNA-Sequenzen	der	sogenannten	

„Enhancer“-Elemente	 kodiert.	 Enhancer	 sind	 genomische,	 nicht	 kodierende	 cis-regulierende	

Elemente,	 die	 als	 Ein-	 und	 Aus-Schalter	 der	 Gentranskription	 fungieren.	 Die	 überwiegende	

Mehrheit	der	krankheitsassoziierten	Mutationen	fällt	in	den	nichtkodierenden	Teil	des	Genoms	

und	scheint	sich	besonders	in	Enhancern	anzureichern	und	die	Genregulation	zu	beeinträchtigen.	

Trotz	der	Bedeutung	von	Enhancern	für	Entwicklung	und	Krankheit,	ist	die	Entschlüsselung	des	

Zusammenhangs	 zwischen	der	 Sequenz	 eines	 Enhancers	 und	 seiner	 regulatorischen	Aktivität	

eine	 der	 größten	 Herausforderungen	 in	 der	 Biologie	 geblieben.	 Weder	 die	 Vorhersage	 der	

Enhancer-Aktivität	noch	die	Entwicklung	synthetischer	Enhancer	mit	spezifischen	Eigenschaften	

ist	bisher	gelungen.	

Ziel	 dieser	 Doktorarbeit	 war	 es,	 ein	 besseres	 Verständnis	 der	 in	 Enhancer-Sequenzen	

kodierten	cis-regulatorischen	Informationen	zu	erlangen,	indem	Deep-Learning-Algorithmen	mit	

Hochdurchsatz-Enhancer-Tests	 und	 systematischen	 Enhancer-Sequenz-

Perturbationsexperimenten	 kombiniert	wurden,	wobei	Drosophila	melanogaster	 S2-Zellen	 als	

Hauptmodellsystem	verwendet	werden.	

Zunächst	 entwickelte	 ich	 ein	 Deep-Learning-Modell	 -	 DeepSTARR,	 das	 die	 Enhancer-

Aktivität	 einer	 beliebigen	 DNA-Sequenz	 und	 ihre	 kritischen	 Nukleotide	 vorhersagt	 und	 die	

Entwicklung	synthetischer	Enhancer	de	novo	ermöglicht.	Ich	wandte	diesen	Ansatz	auf	S2-Zellen	

von	Drosophila	an	und	trainierte	DeepSTARR,	um	den	Code	der	Enhancer-Sequenz	mit	erhöhter	

Genauigkeit	 zu	 lernen.	 In	 einem	 zweiten	 Schritt	 habe	 ich	 das	 Modell	 interpretiert	 und	

Sequenzregeln	für	Enhancer	ermittelt,	wie	zum	Beispiel	die	Bedeutung	von	motivflankierenden	

Nukleotiden	 und	 Transkriptionsfaktor-Motiv-Abständen.	 Wir	 validierten	 diese	 Regeln	

experimentell	und	konnten	ihre	Erhaltung	in	menschlichen	Enhancern	nachgeweisen.	Schließlich	

haben	 wir	 auch	 synthetische	 Enhancer	 mit	 den	 gewünschten	 Aktivitäten	 entworfen	 und	

funktionell	validiert,	was	nicht	nur	den	Nachweis	für	die	Gültigkeit	des	Modells	und	seiner	Regeln	

erbringt,	sondern	auch	das	Potenzial	solcher	Ansätze	für	die	synthetische	Biologie	verdeutlicht.	

Des	weiteren	entwickelten	wir	ein	groß	angelegtes	Enhancer-Mutagenese-Projekt,	um	die	

Regeln	 der	 Enhancer-Sequenzsyntax	 besser	 zu	 verstehen.	 Die	 daraus	 resultierenden	

Veränderungen	der	Enhancer-Aktivität	 bestätigten	die	 vorhergesagten	 Sequenzmerkmale	 von	

DeepSTARR	und	zeigten,	dass	Enhancer	eine	eingeschränkte	Sequenzflexibilität	aufweisen.	Nur	

eine	bestimmte,	aber	dennoch	vielfältige	Gruppe	von	Sequenzen	und	TF-Motiven	kann	an	einer	

bestimmten	Position	funktionieren.	Diese	Aktivität	von	Motiven	an	bestimmten	Positionen	wird	
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stark	durch	den	Kontext	der	Enhancer-Sequenz	bestimmt,	d.	h.	durch	die	flankierende	Sequenz,	

das	Vorhandensein	und	die	Vielfalt	anderer	Motivtypen	und	den	Abstand	zwischen	den	Motiven.	

Insgesamt	 hat	 meine	 Arbeit	 das	 Potenzial	 als	 Grundlage	 für	 aktuelle	 und	 künftige	

Bemühungen	 zu	 dienen,	 die	 im	menschlichen	 Genom	 kodierte	 regulatorische	 Information	 zu	

verstehen,	 die	 Auswirkungen	 genomischer	 Variationen	 auf	 Funktion	 und	 Krankheit	

vorherzusagen	und	synthetische	Enhancer	 für	biotechnologische	Anwendungen,	 insbesondere	

die	Gentherapie,	zu	entwickeln.	
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Introduction	

Genome	as	the	“Life’s	Code”	

Although	DNA	was	discovered	in	1869	by	Friedrich	Miescher1,	only	in	the	middle	of	the	20th	

century	 it	 was	 demonstrated	 that	 DNA,	 not	 protein	 as	 previously	 thought,	 is	 the	 hereditary	

molecule	 that	 carries	 the	 genetic	 information2.	 Not	 even	 a	 decade	 later	 Watson	 and	 Crick	

deciphered	the	double	helical	structure	of	DNA3,	and	yet	another	decade	later	they	cracked	the	

genetic	code	that	dictates	the	encoding	of	the	proteins’	amino-acid	sequences4.	These	and	other	

findings	at	that	time	showed	how	the	information	for	creating	an	organism	could	be	encoded	in	

a	DNA	sequence	made	of	only	four	different	letters	(nucleotides)	–	also	called	genome	–	changing	

our	view	of	life.	

With	the	important	advance	of	DNA	sequencing	technologies5	and	the	ability	to	read	the	

DNA	 four-letter	 code,	 it	 was	 possible	 to	 start	 reading	 the	 genomes	 of	 different	 organisms,	

including	ourselves6,7.	The	Human	Genome	Project	 is	one	of	the	greatest	technological	 feats	in	

history	 and	 revealed	 that	 the	 human	 genome	 is	 approximately	 3	 billion	 base-pairs	 long,	

containing	 only	 around	 20,000	 protein-coding	 genes	 (1%	 of	 the	 genome).	 These	 were	

surprisingly	fewer	than	the	100,000	genes	expected	at	the	time8,9,	not	more	genes	than	a	worm10,	

and	a	lot	less	than	a	tomato11.	But	it	turned	out	that	the	eukaryotic	genome	contains	more	than	

just	 protein-coding	 genes	 and	 has	 evolved	 other	 mechanisms	 for	 generating	 complex	

multicellular	organisms	comprising	a	large	variety	of	cell	types	and	organs.		

Much	of	this	complexity	derives	from	how	the	same	genome	is	differentially	interpreted	by	

different	cell	types	to	express	specific	sets	of	genes	and	proteins	that	define	their	identity12.	For	

example,	despite	containing	the	exact	same	DNA	sequence,	skin	cells	express	several	structural	

proteins,	such	as	keratin,	whereas	red	blood	cells	have	high	levels	of	the	oxygen-carrying	protein	

hemoglobin.	These	differential	gene	expression	patterns	are	regulated	predominantly	at	the	level	

of	gene	transcription	–	the	copying	of	DNA	into	RNA	–	and	governed	by	multiple	types	of	non-

coding	 cis-regulatory	 elements13,14,	 such	 as	 promoters15,	 enhancers16,17,	 insulators18,	 tethering	

elements19,20	and	silencers	21–23.	In	analogy	to	the	well-understood	genetic	code,	deciphering	the	

cis-regulatory	 code	 of	 the	 genome	 is	 critical	 for	 understanding	 the	 developmental	 programs	

during	organism	development	and	how	genetic	variants	and	mutations	affect	development	and	

disease,	since	over	80%	of	genetic	variants	associated	with	human	diseases	and	traits	fall	in	non-

coding	regulatory	regions24.	

13



Gene	expression	is	encoded	in	enhancers’	DNA	sequences	

The	 most	 abundant	 cis-regulatory	 sequences	 are	 enhancers,	 sequence	 elements	 that	

activate	transcription	of	their	target	genes	in	specific	cell	types	and	conditions,	independent	of	

their	relative	distance,	location,	or	orientation	to	the	cognate	promoter25	(Fig	1A).	According	to	

its	 definition,	 the	 activity	 of	 an	 enhancer	must	 reside	within	 its	DNA	 sequence.	 Indeed,	 early	

experiments	using	 functional	reporter	assays	showed	that	enhancer	DNA	is	sufficient	 to	drive	

cell-specific	enhancer	activity	even	when	placed	outside	of	its	endogenous	genomic	context25–28	

(Fig	1B).	In	addition,	the	enhancer	DNA	sequence	also	recapitulates	endogenous	TF	binding,	DNA	

methylation	 and	 histone	 modifications29,30.	 Enhancer	 sequences	 are	 associated	 with	 rapid	

evolutionary	changes31,32	and	contain	most	of	the	known	disease-associated	variants24	(Fig	1C,D).	

However,	despite	the	crucial	role	of	enhancers	in	development	and	disease16,	understanding	how	

the	gene-regulatory	information	is	“encoded”	in	their	sequence	and	interpreted	within	the	cell	

has	 remained	 one	 of	 the	 greatest	 challenges	 in	 biology.	

Figure	 1.	 Enhancer	 activity	 is	 encoded	 in	 the	 enhancer’s	 DNA	 sequence.	 A)	 Enhancers	 are	 DNA	
elements	that	activate	transcription	of	a	target	gene.	This	is	illustrated	by	the	limb	enhancer	of	the	
Sonic	 hedgehog	 (Shh)	 gene,	 located	 1	 megabase	 upstream	 of	 Shh,	 that	 is	 composed	 by	 the	 DNA	
sequence	shown	and	activates	 the	gene	 in	 the	 limbs.	B)	The	 limb	enhancer	drives	expression	of	a	
reporter	gene	in	the	mouse	limbs,	recapitulating	its	endogenous	activity.	 Image	retrieved	from	the	
VISTA	Enhancer	database33.	C)	Enhancers	are	critical	in	organism	development.	For	example,	deletion	
of	this	limb	enhancer	in	mice	causes	truncation	of	limbs.	Image	retrieved	from	ref.34.	D)	Mutations	in	
enhancer	 sequences	 are	 associated	 with	 disease,	 as	 illustrated	 in	 this	 enhancer	 where	 a	 single	
nucleotide	mutation	(T/C	transition	at	position	323)	causes	preaxial	polydactyly	in	humans.	Note	the	
triphalangeal	thumb	on	the	left	hand	(arrow).	Image	retrieved	from	ref.35.	
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Identification	of	enhancers	

The	identification	of	large	sets	of	enhancers	with	similar	functions	has	been	instrumental	

for	the	study	of	enhancers	and	their	sequence	features.	The	enhancer	activity	of	a	DNA	sequence	

is	 typically	 assessed	 by	 functional	 reporter	 assays	 that	 measure	 the	 abundance	 of	 reporter	

transcripts	or	proteins36	(Fig	1B).	However,	classical	reporter	assays	(e.g.	based	on	luciferase)	

suffered	 from	 low	 throughput,	 as	 candidates	 needed	 to	 be	 tested	 one	 by	 one,	 and	 thereby	

prevented	systematic	studies	of	enhancer	sequences.	Therefore,	other	enhancer	properties	have	

been	 used	 for	 genome-wide	 enhancer	 predictions	 across	 different	 cell	 types,	 such	 as	 certain	

properties	 of	 chromatin	 (e.g.	 open	 chromatin	 flanked	 by	 histones	 carrying	 post-translational	

modifications	 on	 lysine	 27	 (acetylation,	 H3K27ac)	 and/or	 lysine	 4	 (monomehylation,	

H3K4me1)),	transcription	factor	(TF)	or	co-activator	(e.g.	P300)	binding,	as	well	as	bidirectional	

transcription17,37–41.	Using	these	biochemical	annotations,	large-scale	projects	like	ENCODE39	and	

Roadmap	Epigenomics38	have	annotated	around	two	million	candidate	regulatory	elements	 in	

the	human	genome	as	potential	enhancers	in	one	or	more	cell	types,	covering	13%	of	the	genome	

cumulatively40.	However,	using	these	correlative	features	to	identify	enhancers	yields	both	false	

positive	and	false	negative	candidate	sequences,	and	cannot	quantitatively	assess	the	activity	of	

putative	enhancers42.	

To	address	this	challenge	and	identify	enhancers	in	a	genome-wide	manner	through	direct	

functional	 tests	 of	 enhancer	 activity,	 two	 main	 approaches	 have	 been	 developed36,42:	 they	

measure	(1)	the	ability	of	candidate	sequences	to	drive	transcription	in	standardized	reporter	

assays	(sufficiency;	e.g.	massively	parallel	reporter	assays	or	MPRAs43–46)	or	(2)	the	requirement	

of	candidate	regions	for	endogenous	gene	expression	(necessity;	e.g.	CRISPR	screens	to	directly	

perturb	 enhancers	 in	 their	 native	 genomic	 context47–49).	 One	 of	 such	 MPRA	 methods,	 self-

transcribing	active	regulatory	region	sequencing	(STARR-seq),	has	been	pioneered	by	my	host	

lab	to	measure	the	enhancer	activity	of	millions	of	DNA	fragments	in	parallel	using	a	constant,	

tractable	 sequence	 environment.	 This	 method	 successfully	 identified	 enhancer	 sequences	

genome-wide	 and	 fostered	 the	 systematical	measurement	 of	 large-scale	 libraries	 of	 enhancer	

variants	 in	both	Drosophila	 and	human	cells	 (refs.46,50–54	 and	Publication	1	and	2).	The	use	of	

STARR-seq	to	identify	and	characterize	enhancer	sequences	is	one	topic	of	this	thesis	(Publication	

1	and	2).	

	

The	 availability	 of	 high-throughput	 approaches	 to	 identify	 and	 characterize	 enhancer	

sequences	 genome-wide	 in	 different	 cell	 types	 (discussed	 above)	 combined	 with	 the	 recent	

development	of	novel	computational	methods	(discussed	below	in	“Decoding	the	cis-regulatory	

code	with	deep	learning”)	offers	a	unique	and	timely	opportunity	to	decipher	the	link	between	an	

enhancer’s	DNA	sequence	and	its	regulatory	activity	in	the	cell	–	the	main	focus	of	this	thesis.	
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The	cis-regulatory	code	of	enhancer	sequences	

Enhancers	are	200-1000	base	pairs	long	and	contain	combinations	of	short	sequence	motifs	

that	 are	 recognized	and	bound	by	different	 sequence-specific	TFs55	 (Fig	2A,B).	The	 combined	

regulatory	cues	of	all	bound	TFs	determine	an	enhancer’s	activity.	TFs	can	have	various	roles	at	

enhancers,	 such	as	 acting	 as	pioneer	 factors,	 triggering	 the	 repositioning	of	nucleosomes	and	

promoting	accessibility	for	other	factors,	or	they	may	recruit	or	facilitate	the	recruitment	of	co-

activators	 and	 -repressors	 that	 do	 not	 directly	 bind	 to	 the	 DNA55.	 Since	 TFs	 are	 differently	

expressed	in	different	cell	types	during	development	or	in	response	to	signaling	cascades,	they	

provide	 the	means	 for	 the	 cell	 to	 regulate	 the	 spatiotemporal	 activity	 of	 enhancers	 and	 their	

target	genes56.	Understanding	how	exactly	TFs	bind	and	regulate	the	activity	of	specific	enhancers	

and	how	this	information	is	encoded	in	each	enhancer’s	sequence	has	become	a	key	goal	towards	

understanding	the	cis-regulatory	code.	

Figure	2.	The	combination	of	all	TFs	bound	to	an	enhancer	determines	its	spatio-temporal	enhancer	
activity.	A-B)	Shown	are	cartoons	of	two	different	enhancers	with	different	combinations	of	TF	motifs	
(colored	boxes)	and	thus	bound	by	different	sets	of	TFs.	Due	to	the	specific	combinations	of	TFs,	they	
drive	expression	in	different	tissues,	such	as	(A)	the	forebrain	and	(B)	the	neural	tube.	Images	from	
mouse	 embryos	 were	 retrieved	 from	 the	 VISTA	 Enhancer	 database33.	 C)	 Position	 weight	 matrix	
(PWM)	of	the	human	ETS1	TF	displayed	as	a	motif	logo.	The	height	of	each	position	is	proportional	to	
its	 information	content	and	the	height	of	 individual	 letters	to	their	relative	 frequencies.	Motif	 logo	
retrieved	from	the	JASPAR	database57.	D)	Example	of	how	the	binding	domain	of	the	ETS1	TF	(blue)	
recognizes	and	binds	in	the	major	groove	of	DNA	(grey),	resulting	in	the	sequence	affinity	represented	
in	(C).	Source:	58.	
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TF	motifs	

TFs	 typically	 recognize	small	6–12	bp-long	degenerate	DNA	sequences	 (motifs)	 through	

physical	interactions	between	their	amino	acid	side	chains	and	the	accessible	edges	of	the	DNA	

base-pairs,	including	direct	hydrogen	bonds,	water-mediated	hydrogen	bonds,	and	hydrophobic	

contacts59	 (Fig	2C,D).	Due	to	these	chemical	 interactions,	TFs	bind	DNA	in	a	sequence-specific	

manner.	The	binding	preference	of	each	TF	is	usually	represented	in	the	form	of	Position	Weight	

Matrices	(PWM)	that	are	then	used	to	identify	instances	of	each	motif	in	a	DNA	sequence60,61	(Fig	

2C).	

TF	motifs	are	often	found	in	enhancer	sequences	and	their	importance	for	enhancer	activity	

was	initially	demonstrated	through	systematic	mutational	analyses	of	individual	enhancers,	such	

as	 the	 even-skipped	 stripe	 262.	 Such	 mutational	 tests	 have	 recently	 been	 scaled	 up	 by	 the	

development	 of	 transcriptional	 reporter	 assays	 that	 can	 assess	 the	 activity	 of	 thousands	 of	

enhancer	variants	in	parallel	(MPRAs).	This	technology	has	been	used	to	systematically	measure	

the	importance	of	nucleotides	and	TF	motifs	to	enhancer	activity	by	saturation	mutagenesis	of	

individual	 enhancer	 sequences43–45,63	 or	 the	mutation	 of	 TF	motifs	 in	 thousands	 of	 enhancers	

(Publication	1	and	refs.64).	

In	addition	to	the	genetic	and	experimental	approaches,	many	computational	approaches	

have	been	developed	for	the	discovery	of	important	TF	motifs.	Statistical	sequence	analyses	of	

large	sets	of	enhancers	with	similar	activity	have	revealed	over-represented	TF	motifs	that	are	

important	 in	 different	 cell	 types28,38–40,51.	 A	 complementary	 approach	 relies	 on	 sequence	

conservation	to	identify	functional	motifs	within	enhancer	sequences65–69.	

Due	 to	 their	 short	 length,	 TF	motifs	 occur	 very	 frequently	 throughout	 the	 genome	 (for	

example,	each	6-bp	long	motif	would	be	expected	to	occur	every	46	bp	=	4,096	bp	on	each	DNA	

strand).	However,	only	a	small	fraction	of	all	matches	in	a	genome	are	typically	bound	and	fall	in	

enhancer	sequences,	and	these	differ	between	cell	types	or	conditions70–76,	suggesting	that	the	TF	

motif	alone	is	not	sufficient	to	direct	in	vivo	binding.	Indeed,	enhancer	sequences	typically	contain	

a	combination	of	motifs	for	different	TFs	that	cooperate	to	drive	enhancer	activity,	for	example	

by	 facilitating	 the	 binding	 of	 each	 other77	 or	 by	 recruiting	 cofactor	 proteins78.	 This	 motif	

combinatorics	combined	with	the	differential	expression	of	the	respective	TFs	can	explain	cell	

type-specific	binding	and	enhancer	activities55	(Fig	2A,B).	This	is	also	demonstrated	by	the	ability	

to	 predict	 with	 good	 accuracy	 cell	 type-specific	 enhancer	 function	 based	 on	 their	 motif	

content28,51.	
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Models	of	how	enhancers	encode	function	

In	addition	to	the	presence	of	multiple	TF	motifs,	several	studies	have	shown	that	enhancer	

activity	depends	on	additional	 sequence	constraints	 related	 to	 the	motifs’	 flanking	sequences,	

affinities	and	arrangements	(their	number,	order,	orientation	and	spacing),	termed	here	‘motif	

syntax’	(Fig	3;	Publication	1	and	2	and	refs.79–98).	However,	the	importance	and	characterization	

of	 such	 syntax	 features	 and	 constraints	 within	 enhancers	 are	 still	 debated	 and	 remain	

outstanding	questions	in	gene	regulation.	

Two	main	models	have	been	proposed	to	explain	how	the	enhancer	sequence	relates	 to	

function.	The	enhanceosome	model	assumes	very	strict	syntax	rules	with	precise	positioning	of	

motifs	required	for	cooperative	TF	binding	and	enhancer	activation84.	This	model	was	derived	

from	the	Interferon-β	enhancer,	where	even	small	sequence	changes	can	affect	the	binding	of	all	

TFs	and	subsequent	enhancer	activity94.	In	contrast,	the	billboard	model	proposes	that	TFs	bind	

largely	independently	to	enhancers	and	that	there	are	no	constraints	on	how	TFBSs	are	arranged,	

exemplified	by	the	even-skipped	stripe	2	enhancer82,99.	Yet	very	few	enhancers	fit	these	models,	

having	 either	 invariant	 syntax	 or	 no	 constraints	 at	 all.	 Recent	 studies,	 including	 this	 thesis,	

support	a	model	where	most	enhancers	fall	in	between	these	two	extremes,	depending	on	flexible	

but	still	important	motif	syntax	features	(Publication	1	and	2	and	refs.80,82,100).	

Figure	3.	Enhancer	syntax.	The	formation	of	a	functional	enhancer	relies	on	both	physical	interactions	
between	 TFs	 and	 DNA,	 as	 well	 as	 protein-protein	 interactions.	 Given	 the	 physical	 properties	 of	
proteins	and	the	enhancer	DNA,	such	interactions	are	thought	to	depend	on	syntax	features	such	as	
the	flanking	sequences,	affinities,	number,	order,	orientation	and	spacing	of	TF	motifs.	Figure	adapted	
from	ref.80.	

Enhancer	syntax	

While	the	contribution	of	motif	syntax	features	in	enhancer	sequences	is	still	not	completely	

clear,	 several	 experiments	 have	 provided	 insights	 into	 existing	 syntax	 constraints.	 Below,	 I	

summarize	 studies	 that	 assessed	 the	 importance	 of	 such	 sequence	 features	 (for	 an	 extensive	

review	see	ref.80).	
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Motif	affinity	

TFs	are	believed	to	control	gene	expression	primarily	by	binding	to	specific	motifs	on	DNA	

which	have	a	strong	affinity	for	the	protein,	or	“cognate”	sites.	Therefore,	most	genomic	studies	

have	focused	on	the	highest	affinity	motif	 instances	for	each	TF.	However,	work	over	the	past	

decade	has	questioned	this	assumption	and	showed	that	both	high-	and	low-affinity	TF	motifs	

within	enhancers	are	important	to	direct	precise	patterns	of	gene	expression83,88–90,101–106.	Low-

affinity	motifs	are	prevalent	in	developmental	enhancers	and	increasing	their	affinity	can	lead	to	

loss	of	 tissue-specific	expression,	developmental	defects	and	diseases89,90,102.	There	appears	 to	

exist	a	tradeoff	between	affinity	and	specificity.	Low-affinity	motifs	might	confer	tissue	specificity	

by	favoring	cooperative	binding,	making	the	enhancer	only	active	where	all	factors	are	present	at	

the	right	concentration,	thus	ensuring	combinatorial	control	of	gene	expression88,90.	Conversely,	

higher	motif	affinity	would	make	the	enhancer	active	even	in	cells	that	have	low	levels	of	the	TF	

and	 therefore	 less	 dependent	 on	 the	 combinatorial	 control,	 explaining	 the	 loss	 of	 tissue-

specificity.	

While	it	is	straightforward	to	identify	high-affinity	motif	instances,	distinguishing	between	

functional	 low-affinity	 instances	 and	 non-functional	 ones	 is	more	 challenging,	 as	 low-affinity	

motif	instances	occur	more	frequently	just	by	chance.	Functional	low-affinity	instances	are	likely	

dependent	on	additional	syntax	features,	such	as	a	specific	distance	to	neighboring	TF	motifs97,102.	

For	 example,	 the	 spacing	 and	 orientation	 of	motifs	 can	 compensate	 for	 low-affinity	motifs	 in	

notochord	 enhancers,	 presumably	 by	 stabilizing	 the	TF	 interactions	 required	 for	 a	 functional	

enhancer	complex89.	Thus,	 the	higher	affinity	motifs	are	not	necessarily	 the	most	 functionally	

significant	ones	and	exploring	the	complex	interplay	between	low-affinity	motifs	and	enhancer	

syntax	is	crucial	for	a	better	understanding	of	enhancer	sequences105.	

Motif	number	

Besides	heterotypic	combinations	of	different	types	of	TF	motifs,	enhancers	often	contain	

multiple	instances	of	the	same	motif	type,	with	varying	affinities.	MPRAs	using	both	natural	and	

synthetic	 enhancers	 have	 consistently	 shown	 that	 higher	 number	 of	 instances	 of	 a	 TF	motif	

correlates	with	stronger	enhancer	activity,	with	varying	effects	between	different	TFs79,92,93,107.	

The	number	of	 instances	of	 each	motif	 type	has	 indeed	been	used	as	an	 important	 feature	 in	

computational	predictive	models	of	enhancer	activity28,51,107.	

Motif	order	

Since	TFs	interact	both	with	the	enhancer	DNA	but	also	with	each	other	via	protein-protein	

interactions,	the	order	in	which	their	motifs	are	arranged	within	an	enhancer	can	influence	such	

interactions.	These	 include	hetero-	or	homodimers	and	higher-order	 interactions.	 Indeed,	 the	

19



order	 of	 motifs	 has	 been	 shown	 to	 influence	 enhancer	 activity	 of	 synthetic	 enhancers	 in	

MPRAs79,91,92	and	to	be	important	in	encoding	developmental	expression	patterns	in	vivo85,86,108.	

An	interesting	observation	within	the	Notch-regulated	ma	enhancer	in	Drosophila	showed	

that	changing	the	order	of	motifs	leads	to	loss	of	activity	in	the	original	cells	and	ectopic	activity	

in	other	tissues.	This	shows	that	motif	order	is	not	only	necessary	for	enhancer	activity	in	the	

tissue	 of	 interest	 but	 can	 also	 prevent	 activity	 in	 ectopic	 tissues	 –	 described	 as	 preventative	

syntax86.	However,	a	second	Notch-regulated	Drosophila	enhancer	in	the	same	study	(ASE5)	was	

largely	resistant	to	perturbations	of	its	syntax,	with	similar	activity	upon	changes	in	the	order	of	

its	required	motifs86.	This	highlights	the	challenge	of	understanding	the	importance	of	motif	order	

for	 enhancer	 activity.	 This	 is	 further	 complicated	 by	 the	 need	 of	 first	 defining	 the	 functional	

features	or	motifs	before	assessing	the	importance	of	changes	in	their	order,	and	because	any	

changes	in	order	can	create	or	ablate	other	functional	motifs	confounding	the	resultant	effects.	

	

Motif	orientation	

Similar	to	the	order	of	motifs,	the	orientation	or	relative	direction	of	motifs	can	also	affect	

the	interaction	of	TFs	with	the	enhancer	DNA	and	other	bound	proteins	and	the	formation	of	a	

functional	complex.	When	the	motif	orientation	is	altered,	the	TF	will	bind	to	the	opposite	strand	

of	 DNA	 in	 a	 reversed	 orientation.	 Several	 examples	 have	 been	 described	 where	 the	 relative	

direction	of	motifs	for	two	TFs	is	important	for	in	vivo	enhancer	activity89,109–112.	The	importance	

of	motif	orientation	was	also	observed	for	the	pluripotency	TFs	in	mouse	synthetic	enhancers79,91.	

	

Motif	spacing	

Cooperation	between	TFs	can	occur	via	multiple	mechanisms	and	at	different	 ranges113.	

Constraints	on	spacing	between	motifs	may	ensure	that	all	motifs	are	accessible	for	the	respective	

TFs	and	can	modulate	both	TF-DNA	interactions	along	with	protein-protein	interactions	such	as	

binding	of	dimers114.	For	example,	facilitating	the	interaction	between	TFs	that	bind	to	adjacent	

motifs	 can	 enable	 cooperativity	 of	 activators115,116	 or	 short-range	 repression117,118.	 Other	

arrangements	might	inhibit	such	interactions	between	activators,	preventing	ectopic	expression	

without	 the	 need	 for	 transcriptional	 repression86.	 Helical	 10	 bp	 periodicity	 of	 motifs	 within	

enhancers	 has	 also	 been	 shown	 to	 be	 important	 for	 gene	 expression,	 likely	 by	 promoting	

cooperative	binding	by	having	motifs	on	the	same	side	of	the	DNA44,94,95,97,110,117,119,120.	Even	single	

base-pair89,121	or	two	base-pair122	changes	in	spacing	can	affect	expression	levels,	demonstrating	

how	subtle	changes	in	motif	spacing	can	impact	enhancer	activity.	
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Dependency	syntax	

Despite	extensive	evidence	that	enhancer	activity	may	depend	on	the	syntax	of	TF	motifs,	

the	extent	to	which	such	syntax	features	might	constrain	enhancer	activity	remains	difficult	to	

define,	as	it	differs	from	one	enhancer	to	another.	Indeed,	such	rules	are	rarely	found	in	genome-

wide	analyses	 and	perturbing	 them	affects	 the	 function	of	 some	enhancers	but	not	others.	 In	

addition,	although	enhancer	sequences	evolve	rapidly,	their	function	can	be	conserved	despite	

significant	sequence	changes31,32,81,90,106,123–133.	This	suggests	that	enhancer	sequences	are	highly	

flexible	 and	 that	 the	maintenance	 of	 function-defining	 features	 rather	 than	 overall	 sequence	

similarity	is	important	for	enhancer	activity.	

To	explain	how	most	enhancers	fall	 in	between	the	two	extreme	models	of	the	billboard	

and	the	enhanceosome,	Jindal	&	Farley	proposed	a	dependency	syntax	model	where	enhancers	

encode	enhancer	activity	through	the	dependency	and	interplay	between	such	sequence	syntax	

features,	which	in	turn	are	shaped	by	evolutionary,	biological,	and	mechanistic	constraints80	(Fig	

4).	For	example,	in	Ciona	development,	previous	analyses	of	notochord	enhancers	regulated	by	

Zic	and	ETS	TF	motifs	found	that	there	is	an	interplay	between	affinity	and	organization	of	motifs,	

such	that	organization	could	compensate	for	poor	affinity	and	vice	versa89.	The	intricate	syntax	

of	enhancers	has	posed	a	long-standing	challenge	in	identifying	and	generalizing	sequence-rules,	

thus	hindering	the	establishment	of	unified	principles	governing	the	regulatory	code.	

Figure	4.	Dependency	syntax.	The	enhanceosome	and	billboard	models	represent	two	opposite	ends	
of	a	spectrum.	Most	enhancers	fall	at	different	points	along	this	spectrum,	encoding	enhancer	activity	
through	the	dependency	and	interplay	between	motif	syntax	features	that	are	shaped	by	evolutionary,	
biological,	and	mechanistic	constraints.	Figure	adapted	from	ref.80.	

Characterizing	 the	 cis-regulatory	 syntax	 features	 and	 constraints	 within	 enhancer	

sequences	is	one	topic	of	this	thesis	(Publication	1	and	2).	
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Decoding	the	cis-regulatory	code	with	deep	learning	

Although	many	features	of	enhancer	sequences	and	their	syntax	have	been	described	over	

the	past	40	years,	there	is	still	no	clear	understanding	of	how	the	combination	of	such	features	

encodes	 specific	 enhancer	 activity	 patterns.	 Moreover,	 the	 prediction	 of	 enhancers	 from	

sequence	 alone	 remains	 challenging,	 as	 well	 as	 de	 novo	 enhancer	 design.	 In	 addition	 to	 the	

importance	and	characterization	of	the	described	motif-based	rules,	there	might	be	requirements	

that	are	not	well	represented	by	motifs,	or	for	which	we	do	not	know	the	necessary	motifs	yet.	

Furthermore,	 there	 might	 be	 multiple	 codes	 intertwined	 in	 a	 single	 enhancer	 sequence,	 or	

enhancers	with	similar	activity	might	be	a	mix	of	two	or	more	enhancer	codes,	such	as	cell	type-

specific	and	ubiquitous.	The	complexity	of	the	enhancer	sequence	space	highlights	the	need	for	

approaches	that	can	identify	the	different	sequence	features	and	model	their	interdependencies.	

Many	modeling	approaches	based	on	thermodynamics	or	machine	learning	methods	have	

been	 used	 to	 predict	 enhancer	 activity	 and	 to	 pursue	 a	 quantitative	 and	 mechanistic	

understanding	 of	 enhancer	 function51,64,79,107,134–147.	 However,	 such	 approaches	 have	 modeled	

enhancer	 sequences	explicitly	via	predefined	sets	of	 features	 that	were	 informed	by	previous	

biological	 and	 biophysical	 knowledge,	 such	 as	motif	 dictionaries	 or	 de	 novo	k-mers	 (Fig	 5A).	

Despite	important	successes,	no	clear	rules	of	the	cis-regulatory	code	have	emerged55,59.	This	is	

mainly	due	to	the	difficulty	of	computationally	defining	and	encoding	those	features	(e.g.	TF	motif	

affinity)	 and	 their	 interdependencies	 (e.g.	 motif	 organization	 can	 compensate	 for	 motif	 low	

affinity).	There	 is	hence	a	critical	need	 for	more	general,	unbiased	and	 flexible	computational	

methods	 that	 can	 take	 advantage	 of	 the	 existing	 large	 amount	 of	 accurate,	 high	 resolution	

genomics	datasets	to	model	the	information	encoded	in	enhancer	sequences.	
	

	

Figure	5.	Predicting	enhancer	activity	directly	from	the	DNA	sequence	rather	than	via	predefined	sets	
of	features.	A)	A	common	approach	for	predicting	the	enhancer	activity	of	DNA	sequences	is	to	first	
extract	specific	sets	of	features	(like	TF	motif	counts)	and	use	them	in	machine	learning	frameworks.	
B)	Using	deep	learning	algorithms,	it	is	possible	to	skip	the	feature	extraction	step	and	use	the	DNA	
sequence	directly	as	input	to	the	model,	which	should	discover	the	relevant	features	during	training	
in	order	to	predict	the	enhancer	activity	of	DNA	sequences.	
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Deep	learning:	a	new	paradigm	

Deep	learning	–	a	sub-discipline	of	machine	learning	–	bypasses	the	need	for	predefined	

known	features	by	embedding	the	computation	of	features	into	the	automated	learning	process,	

yielding	 so-called	 end-to-end	models148.	 This	was	made	possible	 by	 the	development	 of	 deep	

neural	 networks,	 that	 are	machine	 learning	models	 consisting	 of	multiple,	 consecutive	 layers	

performing	successive	elementary	operations	and	nonlinear	transformations.	Since	each	 layer	

operates	on	the	results	of	the	preceding	layers,	the	model	is	able	to	improve	prediction	accuracy	

by	 learning	 increasingly	complex	 features	and	modeling	nonlinear	relationships	during	model	

training.	

One	key	feature	of	deep	learning	models	is	their	capacity	to	extract	higher-order	features	

from	 the	 raw	 input	 data.	 Combined	 with	 the	 explosion	 of	 the	 amount	 of	 available	 data	 and	

computing	capacity	 in	 the	past	years,	deep	 learning	models	have	 led	 to	multiple	performance	

breakthroughs	in	a	diverse	set	of	tasks,	including	computer	vision149–151,	speech	recognition152,	

machine	 translation153,	 playing	 computer	 games154	 and	 self-driving	 cars155.	 Deep	 learning’s	

success	 already	 reached	 numerous	 scientific	 fields,	 such	 as	 chemistry,	 physics,	 biology,	 and	

materials	 science,	where	 it	 has	 outperformed	 other	machine	 learning	 techniques156–161.	 More	

recently,	 in	 structural	 biology,	 the	 deep-learning-based	 methods	 AlphaFold2162	 and	

RoseTTAfold163	 achieved	 unprecedent	 accuracy	 in	 the	 long-standing	 problem	 of	 predicting	

protein	structures	from	their	genetic	sequence,	representing	a	true	paradigm	shift	in	the	way	we	

study	biology.	

I	illustrate	the	conceptual	difference	to	other,	more	classical	machine	learning	approaches	

with	the	following	example.	To	classify	a	tumor	as	malign	or	benign	from	a	microscopy	image,	a	

preprocessing	algorithm	could	be	first	used	to	detect	cells,	identify	the	cell	type	and	estimate	the	

cell	counts	for	each	cell	type,	which	will	be	used	by	a	machine	learning	model	to	classify	the	tumor.	

However,	 this	 makes	 the	 classification	 performance	 highly	 dependent	 on	 the	 quality	 and	

relevance	of	the	handcrafted	features	used	as	input	(i.e.	estimated	cell	counts),	and	is	inherently	

limited	to	the	use	of	known	features,	missing	other	currently	unknown	features.	An	alternative	

approach	would	be	to	use	the	image	directly	as	input	to	a	deep	neural	network	that	would	learn	

all	 the	 steps	 required	 to	 classify	 the	 tumor,	 including	 features	 of	 high	 complexity	 as	 the	 cell	

morphology	and	spatial	organization	of	cells	that	are	not	captured	in	cell	counts.	Using	the	same	

analogy	 for	 predicting	 enhancer	 activity	 from	 the	 DNA	 sequence,	 rather	 than	 first	 extracting	

specific	sets	of	features	(like	TF	motif	counts)	and	use	them	in	a	machine	learning	framework	(Fig	

5A),	 one	 could	 instead	use	 the	 enhancer’s	DNA	 sequence	directly	 as	 input	 to	 a	deep	 learning	

model	and	let	the	model	discover	the	relevant	features	in	order	to	predict	the	enhancer’s	activity	

(Fig	5B).	
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Modelling	regulatory	genomics	with	convolutional	neural	networks	

The	applicability	of	deep	neural	networks	in	genomics	was	first	demonstrated	in	2015	by	

two	studies	that	used	deep	learning	to	predict	the	sequence	specificities	of	DNA-	and	RNA-binding	

proteins	(DeepBind	model164)	as	well	as	chromatin	features	(DeepSEA165)	from	DNA	sequence,	

surpassing	more	established	(non-deep	learning)	machine	learning	algorithms,	such	as	support	

vector	machines.	This	was	 followed	by	Basset166,	 an	open-source	package	developed	 to	apply	

deep	neural	networks	to	learn	the	functional	activity	of	DNA	sequences	from	genomics	data	that	

facilitated	the	use	of	such	models	by	the	community.	These	seminal	studies	also	demonstrated	

the	utility	of	deep	learning	models	in	non-coding	variant	effect	prediction	and	their	promise	to	

better	annotate	and	 interpret	 the	non-coding	genome.	Since	 then,	deep	neural	networks	have	

been	applied	to	predict	diverse	molecular	phenotypes	(see	also	Publication	1)	and	have	emerged	

as	the	leading	type	of	predictive	models	in	regulatory	genomics167.	

There	 are	 three	 major	 classes	 of	 neural	 networks:	 fully	 connected,	 convolutional	 and	

recurrent.	Due	to	the	importance	of	local	and	spatial	dependencies	between	nucleotides	in	DNA	

sequences	 (e.g.	 TF	motif	 sequences	 and	 the	 distance	 between	motifs),	 the	most	 widely	 used	

architecture	to	model	DNA	sequences	is	convolutional	neural	network	(CNN).	The	three	pivotal	

models	mentioned	above	were	indeed	CNNs.	CNNs	are	composed	of	one	or	more	convolutional	

layers,	 each	 scanning	 a	 set	 of	weight	matrices	 (also	 called	 filters)	 across	 the	 input,	 therefore	

learning	to	recognize	relevant	local	patterns149.	The	first	convolutional	layer	applied	to	the	input	

DNA	 sequence	 can	 also	 be	 viewed	 as	 scanning	 the	 sequence	 with	 several	 position	 weight	

matrices,	such	as	TF	motifs	 (Fig	6B-D).	Since	 the	same	 filter	 is	scanned	across	all	positions,	 it	

allows	 to	 detect	 that	 feature	 anywhere	 in	 the	 sequence	 (such	 as	 positions	 not	 seen	 during	

training)	while	keeping	the	total	number	of	parameters	small	regardless	of	the	sequence	length.	

Subsequent	convolutional	layers	allow	a	hierarchical	decomposition	of	the	input	and	are	able	to	

detect	higher-order	features,	such	as	two	TF	motifs	that	are	present	within	some	distance	range	

(Fig	6E-G).	CNNs	usually	apply	convolutional	layers	to	extract	the	relevant	features	and	patterns	

from	 the	 input	 sequence	 and	 combine	 them	with	 fully	 connected	 layers	 that	 learn	non-linear	

combinations	of	these	features	to	perform	the	final	prediction	task	(Figure	6H).	Importantly,	all	

the	parameters	of	the	convolutional	(i.e.	 filters	or	features)	and	the	fully	connected	layers	(i.e.	

importance	and	combinations	of	features)	are	learned	during	model	training.	
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Figure	6.	Modelling	transcription	factor	binding	and	syntax	with	convolutional	neural	networks.	The	
illustration	shows	a	convolutional	neural	network	that	predicts	the	binding	of	the	TAL1-GATA1	TF	
complex.	 A)	 The	 input	 is	 a	 one-hot	 encoded	 representation	 of	 the	 DNA	 sequence.	 B)	 The	 first	
convolutional	layer	scans	the	input	sequence	using	filters	to	identify	local	sequence	features,	which	
are	 demonstrated	 using	 position	weight	matrices	 for	 the	 GATA1	 and	 TAL1	 TFs.	 C)	 An	 activation	
function	(e.g.	rectified-linear	unit	or	ReLU)	is	used	to	set	negative	values	to	0.	D)	Contiguous	sections	
of	the	activation	map	can	be	summarized	using	a	max	pooling	operation	by	taking	the	maximum	value	
for	each	channel	in	each	bin.	E)	The	second	convolutional	layer	scans	the	sequence	for	more	complex	
patterns	 such	 as	 pairs	 of	 motifs	 and	 individual	 motifs.	 F)	 As	 in	 the	 first	 convolution,	 the	 ReLU	
activation	function	is	applied.	G)	The	maximum	value	across	all	positions	for	each	channel	is	selected.	
H)	A	fully	connected	layer	is	used	to	make	the	final	prediction.	Figure	retrieved	from	ref.167.	

	

Recurrent	 neural	 networks	 (RNNs)168,169	 are	 an	 alternative	 to	 CNNs	 for	 processing	

sequential	data,	such	as	DNA	sequences.	This	type	of	network	is	composed	of	nodes	arranged	in	

a	chain	and	uses	the	memory	of	the	previous	sequence	element	to	influence	the	output,	being	able	

to	model	long-range	dependencies	in	sequences.	Both	architectures	are	often	used	together,	such	

that	a	sequence	is	passed	through	convolutional	layers	before	entering	a	recurrent	layer170–174.	

To	 increase	 the	 receptive	 field	 and	 integrate	 information	 from	 long-range	 interactions	 in	 the	

genome,	CNNs	have	been	also	combined	with	dilated	convolutions	(achieving	a	receptive	field	up	

to	20	kb175,176)	and	transformers	and	self-attention	layers	(up	to	100	kb177).	Overall,	CNNs	and	

their	 different	 variant	 architectures	 have	 been	 used	 to	 predict	 with	 great	 accuracy	 several	

molecular	 phenotypes167,178,179,	 including	 TF	 binding	 sites97,164,180,181,	 DNA	 methylation182,183,	

chromatin	features165,172,173,175,181,184–188,	promoter133	and	enhancer	activity	(see	Publication	1),	3D	

genome	 folding189–193,	 splicing194,195,	 gene	 expression175,177,196,	 polyadenylation197–200,	 mRNA	

stability174,	RBP	binding201–203,	microRNA	targets204	and	translation	effiency205.	
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Interpretation	of	deep	learning	models	

Despite	 the	 impressive	performance	of	deep	 learning	models,	 their	complexity	and	high	

capacity	 to	 encode	 latent	 feature	 representations	 make	 them	 particularly	 challenging	 to	

interpret.	This	explanatory	information	is	usually	of	great	value	and	can	provide	new	insights	into	

the	 biological	mechanisms.	 For	 example,	 interpreting	 a	 trained	model	 that	 predicts	 enhancer	

activity	 could	 reveal	 the	 importance	 of	 DNA	 motifs	 and	 their	 interactions	 in	 an	 enhancer	

sequence.	

Over	the	past	years,	different	approaches	 for	model	 interpretation	have	been	developed	

and	show	promise	in	identifying	the	features	and	feature	combinations	learned	by	the	models.	

These	can	be	categorized	into167,178:	

• model-based	 interpretation:	 interpreting	 first-layer	 convolutional	 nodes	 and

visualizing	attention	weights;

• mathematical	 propagation	 of	 influence:	 in-silico	mutagenesis	 and	 backpropagation-

based	methods;

• identification	 of	 interactions	 between	 features:	 examining	 deeper	 layer	 neurons	 or

attention	 matrices,	 in-silico	 mutagenesis	 for	 specific	 combinations	 of	 features,	 and

deep	feature	interaction	maps;

• use	 of	 prior	 knowledge	 for	 transparent	 models,	 where	 the	 hidden	 nodes	 are

constructed	to	be	inherently	interpretable.

There	is	still	no	consensus	regarding	which	approaches	are	most	effective	and	few	studies	

have	been	able	to	uncover	new	biological	features	learned	by	this	type	of	models.	Only	recently,	

model	 interpretation	techniques	have	provided	biological	 insights	 into	the	cis-regulatory	code	

and	 the	 syntax	 of	 enhancer	 sequences	 (Publication	 1	 and	 refs.97,173,188,198,206–210).	 With	 the	

increasing	number	and	accuracy	of	deep	 learning	models,	 interpreting	them	and	investigating	

complex	relationships	between	features	will	have	a	central	role	in	genomics.	

Characterizing	 the	cis-regulatory	syntax	of	enhancer	sequences	using	deep	 learning	and	

model	interpretation	techniques	is	one	topic	of	this	thesis	(Publication	1).	
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Aims	of	the	thesis	

The	information	that	determines	when	and	where	a	gene	is	going	to	be	expressed	resides	

in	the	DNA	sequence	of	enhancers.	Deciphering	their	cis-regulatory	code	has	remained	one	of	the	

greatest	challenges	in	biology.	This	includes	being	able	to	quantitatively	predict	the	activity	of	a	

given	 sequence,	 identify	 the	 important	 nucleotides,	 understand	 the	 motif	 syntax	 rules,	 and	

ultimately	the	de	novo	design	of	synthetic	enhancers.	Understanding	the	regulatory	information	

encoded	in	enhancer	sequences	would	unlock	an	enormous	amount	of	regulatory	information	in	

the	genome	and	allow	us	to	interpret	the	impact	of	genetic	variants	involved	in	development	and	

disease,	which	typically	affect	enhancers	and	gene	regulation.		

The	general	aim	of	this	PhD	thesis	 is	to	advance	the	understanding	of	the	cis-regulatory	

information	encoded	in	the	genome.	In	particular,	the	main	goals	are	the	developmental	of	models	

to	predict	enhancers	from	the	DNA	sequence	and	the	characterization	of	their	sequence	rules.	

Specifically:	

1. Develop	 a	 sequence-based	 deep	 learning	model	 to	 predict	 enhancer	 activity	 directly

from	the	DNA	sequence	(Publication	1),

2. Interpret	 the	 model	 to	 reveal	 relevant	 TF	 motifs	 and	 higher-order	 syntax	 rules	 in

enhancer	 sequences,	 and	 use	 the	 model	 to	 design	 synthetic	 enhancers	 with	 specific

activities	(Publication	1),

3. Functionally	 characterize	 the	 rules	 of	 enhancer	 syntax	 using	 large-scale	 enhancer

sequence	perturbation	assays	(Publication	2).
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Results	and	discussion	of	the	publications	

In	this	chapter	I	present	the	relevant	publications	I	co-authored	in	the	course	of	my	PhD	study.	
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Publication	1	–	DeepSTARR	predicts	enhancer	activity	from	DNA	sequence	and	enables	the	

de	novo	design	of	synthetic	enhancers	

Bernardo	P.	de	Almeida,	Franziska	Reiter,	Michaela	Pagani,	Alexander	Stark.	

Nature	Genet	54,	613–624	(2022).	https://doi.org/10.1038/s41588-022-01048-5,	REF:	211	

Summary	and	discussion	

Identifying	enhancers	and	characterizing	their	sequence	determinants	–	the	cis-regulatory	

code	–	 is	a	 long-standing	problem.	Enhancer	sequences	control	gene	expression	and	comprise	

binding	 sites	 (motifs)	 for	 different	 transcription	 factors	 (TFs).	 Despite	 extensive	 genetic	 and	

computational	studies,	the	relationship	between	DNA	sequence	and	its	regulatory	activity	in	the	

cell	remains	poorly	understood,	and	de	novo	enhancer	design	with	specific	properties	has	been	

challenging.	

In	this	paper,	we	combined	a	high-throughput	enhancer	testing	technology	with	artificial	

intelligence	to	develop	an	innovative	deep	learning	model,	DeepSTARR.	DeepSTARR	predicts	the	

enhancer	activity	of	any	DNA	sequence,	its	critical	nucleotides,	and	enables	the	design	of	synthetic	

enhancers	 de	 novo.	We	 have	 applied	 this	 approach	 to	Drosophila	 melanogaster	 S2	 cells	 and	

trained	 DeepSTARR	 to	 learn	 its	 enhancer	 sequence	 code	 for	 two	 different	 transcriptional	

programs	with	 remarkable	 accuracy.	The	model	 learned	 relevant	TF	motifs	 and	higher-order	

syntax	 rules,	 including	 functionally	 nonequivalent	 instances	 of	 the	 same	 TF	 motif	 that	 are	

determined	 by	 motif-flanking	 sequence	 and	 inter-motif	 distances.	 We	 validated	 these	 rules	

experimentally	 and	 demonstrated	 their	 conservation	 in	 human	 enhancers.	 This	 revealed	

important	insights	about	the	regulatory	principles	of	enhancer	sequences	in	different	species	as	

distant	as	flies	and	human.	

Finally,	we	further	designed	and	functionally	validated	synthetic	enhancers	with	desired	

activities	de	novo,	demonstrating	the	validity	of	the	model	and	its	rules	but	also	illustrating	the	

power	of	such	approaches	for	synthetic	biology.	

In	summary,	DeepSTARR	allows	us	to	predict,	understand,	and	create	enhancer	sequences.	

Our	work	is	complementary	to	recent	efforts	modeling	other	aspects	of	enhancer	biology	using	

deep	learning,	such	as	DNA	accessibility,	histone	modifications	or	TF	binding.	I	anticipate	that	

these	 models	 will	 be	 further	 combined	 with	 models	 for	 other	 cis-regulatory	 elements	 (for	

example,	promoters,	 insulators	or	silencers)	as	well	as	models	 that	predict	gene	 transcription	

from	enhancer	activities	(for	example	the	ABC	model48)	or	the	wider	genomic	sequence	context	

(for	 example,	 Enformer177)	 towards	 ultimately	 understanding	 how	 our	 genomes	 store	 gene-

regulatory	information	to	dictate	gene	expression	and	development.	
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Enhancers1 are genomic elements that regulate the cell-type- 
specific transcription of target genes, thereby controlling 
animal development and physiology2. A feature of enhanc-

ers is their ability to activate transcription outside their endog-
enous genomic contexts3, which suggests that all the necessary 
cis-regulatory information is contained within the enhancers’ DNA 
sequences. Indeed, enhancer sequence mutations can drastically 
alter enhancer function and are associated with developmental 
defects2, morphological evolution4, and human disease5.

Enhancers typically contain multiple sequence motifs that are 
binding sites for sequence-specific TFs6. Understanding how motifs 
and their arrangements (their number, order, orientation and spac-
ing – termed here collectively ‘motif syntax’) relate to enhancer 
function has remained one of the most important open questions 
in modern biology. Systematic mutagenesis of various individual 
enhancers has revealed a complex picture, whereby changing 
nucleotides or altering motif syntax affected the function of some 
enhancers but not others7–27. These contradictory observations 
have made it difficult to define the relationship between enhancer 
sequence and function18,28.

Many computational approaches have sought to predict enhancer 
activities from DNA sequences using local DNA features, for exam-
ple motif dictionaries or de novo k-mers, and selected syntax rules in 
various thermodynamic or machine-learning frameworks16,17,27,29–40. 
Despite remarkable success, these approaches did not reveal how 
the motif syntax elements collaborate to determine enhancer activ-
ity. In addition, they did not consider the mutual compatibilities 
between certain enhancer- and promoter-types recently reported 
for different transcriptional programs41–43. Thus, quantitatively pre-
dicting the regulatory activity of enhancers and the de novo design 
of synthetic enhancers have remained open challenges for decades.

Previous approaches typically modeled enhancer sequences 
explicitly via predefined sets of features, which were informed by pre-
vious biological knowledge44. In contrast, deep learning, in particular  

convolutional neural networks, does not require previous knowl-
edge and can learn accurate models directly from raw data45–55. 
Once trained on raw data, these models allow the extraction and 
interpretation of the learned rules by new types of tools45–47,49,50,56–61.  
For example, when applied to ChIP-nexus data that measures 
TF-binding genome wide at high resolution, a convolutional neu-
ral network was able to learn motifs and syntax rules for coopera-
tive TF binding49. Similarly, this approach was used to model DNA 
accessibility46–48,50,52,53,55, transcriptional reporter activities62 and 
predict genetic variant effects54. Nevertheless, a model to quanti-
tatively predict enhancer activities solely from DNA sequence in a 
single cell type, and its interpretation to reveal and validate specific 
cis-regulatory rules are still missing.

Here, we built a deep-learning model—DeepSTARR—to pre-
dict enhancer activity towards two promoters from the distinct 
developmental and housekeeping transcriptional programs in 
D. melanogaster S2 cells directly from the DNA sequence. For both 
programs, DeepSTARR predicts enhancer activity quantitatively 
for unseen sequences and reveals different coding features for the 
two programs, including specific TF motifs that we validate experi-
mentally. We further extract motif syntax rules, including favor-
able and unfavorable sequence contexts and intermotif distances, 
which are predictive of enhancer activity in Drosophila and can 
be adjusted to human enhancers, as we validate experimentally 
by high-throughput mutagenesis of thousands of enhancers and 
enhancer variants. These rules allowed the design of synthetic 
enhancers with desired activity levels de novo.

Results
DeepSTARR predicts enhancer activity from DNA sequence. 
To learn the cis-regulatory information encoded in enhancer 
sequences in an unbiased way, we developed a deep-learning model 
called DeepSTARR that predicts enhancer activity directly from 
DNA sequence. First, we used UMI-STARR-seq63,64 to generate 

DeepSTARR predicts enhancer activity from 
DNA sequence and enables the de novo design of 
synthetic enhancers
Bernardo P. de Almeida! !1,2, Franziska Reiter1,2, Michaela Pagani1 and Alexander Stark! !1,3 ✉

Enhancer sequences control gene expression and comprise binding sites (motifs) for different transcription factors (TFs). 
Despite extensive genetic and computational studies, the relationship between DNA sequence and regulatory activity is poorly 
understood, and de novo enhancer design has been challenging. Here, we built a deep-learning model, DeepSTARR, to quan-
titatively predict the activities of thousands of developmental and housekeeping enhancers directly from DNA sequence in 
Drosophila melanogaster S2 cells. The model learned relevant TF motifs and higher-order syntax rules, including functionally 
nonequivalent instances of the same TF motif that are determined by motif-flanking sequence and intermotif distances. We 
validated these rules experimentally and demonstrated that they can be generalized to humans by testing more than 40,000 
wildtype and mutant Drosophila and human enhancers. Finally, we designed and functionally validated synthetic enhancers 
with desired activities de novo.
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genome-wide high-resolution quantitative activity maps of devel-
opmental and housekeeping enhancers, representing the two main 
transcriptional programs in Drosophila S2 cells41–43 (Fig. 1a). We 
identified 11,658 developmental and 7,062 housekeeping enhanc-
ers (Fig. 1b and Supplementary Fig. 1a,b). These enhancers are 
largely nonoverlapping, confirming the specificity of the different 
transcriptional programs. These genome-wide enhancer activity 
maps provide a high-quality dataset to build predictive models of 
enhancer activity and characterize the sequence determinants of 
two main enhancer types.

We built the multitask convolutional neural network DeepSTARR 
to map 249-bp-long DNA sequences tiled across the genome to 
both their developmental and their housekeeping enhancer activi-
ties (Fig. 1c). We adapted the Basset convolutional neural network 
architecture46 and designed DeepSTARR with four convolution  

layers, each followed by a max-pooling layer, and two fully con-
nected layers (Fig. 1c and Supplementary Fig. 2; Methods). The 
convolution layers identify local sequence features (for example, TF 
motifs) and increasingly complex patterns (for example, TF motif 
syntax), whereas the fully connected layers combine these fea-
tures and patterns to predict enhancer activity separately for each 
enhancer type.

We evaluated the predictive performance of DeepSTARR on a 
held-out test chromosome. The predicted and observed enhancer 
activity profiles were highly similar for both developmental 
(Pearson correlation coefficient (PCC) = 0.68) and housekeeping 
(PCC = 0.74) enhancers (Fig. 1b,d and Supplementary Figs. 1, 3 and 
4). This performance is close to the concordance between experi-
mental replicates (PCC = 0.73 and 0.76, respectively; Supplementary 
Fig. 1c), suggesting that the model accurately captures the regulatory 

a b

c

d e

Enhancer
activity 

ORF

Dev

Hk

ORF pA

UMI

+ Genome-wide
library 

AAAAA

Four (convolution + max pooling)
layers

Two fully connected
layers

Input

Predicted
enhancer activity

Conv filters: 256,60,60,120
filter sizes: 7,3,5,3

256
2

1

Output

x4

F
la

tt
en

Dev

Hk

256 256

Local sequence features
(for example, motif instances)

Motif syntax
detection

Task-specific
prediction

Decision of
importance

256
2

1

M
ax

 p
oo

lin
g

chr2R:13,522,605–13,575,354

Hk

Dev

P
re

di
ct

ed

Hk

Dev

O
bs

er
ve

d 324

324

399

479

0

0

0

0

Hk

Dev

P
re

di
ct

ed

Hk

Dev

O
bs

er
ve

d
Performance evaluation (test set) Dev versus Hk (test set)

log2 FC Dev versus Hk (observed)

lo
g 2

 F
C

 D
ev

 v
er

su
s 

H
k 

(p
re

di
ct

ed
)

–2

2

0

4

–4 –2 0 2 4 6

Hk enhancer activity [log2]

P
re

di
ct

ed
 H

k 
ac

tiv
ity

 [l
og

2]

–2

2

4

0

8

6

–4 –2 0 2 4 6 8

Dev enhancer activity [log2]

P
re

di
ct

ed
 D

ev
 a

ct
iv

ity
 [l

og
2]

–2

2

4

0

6

–4 –2 0 2 4 6 8

log2 FC (observed)

2.5
0
–2.5
–5.0

5.0

PCC: 0.88PCC: 0.68 PCC: 0.74

Fig. 1 | DeepSTARR quantitatively predicts enhancer activity genome wide from DNA sequence. a, Schematics of genome-wide UMI-STARR-seq using 
developmental (Dev) (DSCP; red) and housekeeping (Hk) (RpS12; blue) promoters. b, DeepSTARR predicts enhancer activity genome wide. Genome 
browser screenshot depicting observed and predicted UMI-STARR-seq profiles for both promoters for a locus on the held-out test chromosome (Chr) 2R. 
c, Architecture of the multitask convolutional neural network DeepSTARR that was trained to simultaneously predict quantitative Dev and Hk enhancer 
activities from 249-bp DNA sequences. d, DeepSTARR predicts enhancer activity quantitatively. Scatter plots of predicted versus observed Dev (left) 
and Hk (right) enhancer activity signal across all DNA sequences in the test set chromosome. Color reflects point density. e, DeepSTARR quantitatively 
predicts Dev and Hk enhancer–promoter specificity. Predicted versus observed log2FC between Dev and Hk activity for all enhancer sequences in the test 
set chromosome. PCC, Pearson correlation coefficient.
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information present in the sequences and the differences between 
developmental and housekeeping enhancers (Fig. 1e). DeepSTARR 
performed better than methods based on known TF motifs or unbi-
ased k-mer counts35, both at predicting continuous enhancer activity 
and at binary classification of enhancer sequences (Supplementary 
Figs. 1d–f and 4). Thus, DeepSTARR learned generalizable features 
and rules de novo directly from the DNA sequence that allow the 
prediction of enhancer activities for unseen sequences.

DeepSTARR reveals TF motifs required for enhancer activity. 
To understand the features and rules learned by DeepSTARR, we 
quantified how each individual nucleotide in every sequence con-
tributes to the predicted developmental and housekeeping enhancer 
activities49,57,65,66 (Fig. 2a). These predicted contributions agreed well 
with experimental scanning mutagenesis of five different enhancers 
(average PCC: 0.73; Supplementary Fig. 5). We next consolidated 
recurrent highly scoring sequence patterns into motifs58 (Fig. 2b  
and Supplementary Fig. 6; Methods). This uncovered distinct 
motifs of activating TFs that are known to occur in developmental 
and housekeeping enhancers27,41, thus validating the approach and  

reinforcing the mutual incompatibility of the two transcrip-
tional programs (Fig. 2a,b and Supplementary Fig. 7). In addi-
tion, motif instances of repressive TFs received negative weights 
(Supplementary Fig. 8), indicative of the repressive functions of 
these TFs and the relative underrepresentation of these motifs in 
active enhancers (Supplementary Fig. 7f).

We tested the requirements of select activator TF motifs for 
enhancer activity experimentally across hundreds of enhancers 
by performing large-scale motif mutagenesis (4,960 motif muta-
tions in 856 developmental and 1,041 housekeeping enhancers; 
Fig. 2c and Supplementary Figs. 9 and 10). Consistent with their 
predicted importance, mutating eight developmental motifs (AP-1, 
GATA, SREBP, CREB, twist, ETS, STAT, Trl) substantially reduced 
the activity of developmental, but not housekeeping, enhancers, 
with AP-1 and GATA motifs being most important, as predicted 
by DeepSTARR. In contrast, mutating four housekeeping motifs 
(Dref, Ohler1, Ohler6, Ohler7) affected only housekeeping but 
not developmental enhancers and mutating three control motifs 
(length-matched random motifs to control for enhancer sequence 
perturbation) did not have any impact (Fig. 2c).
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and DeepSTARR’s predicted global importance (y axis) for all representative TF motifs. Important motifs for each enhancer type are highlighted.

NATURE GENETICS | VOL 54 | MAY 2022 | 613–624 | www.nature.com/naturegenetics 615

34



ARTICLES NATURE GENETICS

Interestingly, the motifs learned by DeepSTARR were not 
restricted to highly enriched motifs but included other motifs 
such as SREBP, CREB and ETS motifs that, on their own, were 
not or only weakly overrepresented in S2 developmental enhanc-
ers. These motifs could therefore not have been found by methods 
based on over-representation (Fig. 2b,d) and they might contrib-
ute to TF binding and enhancer activity only in combination with 
other motifs and TFs22,67. Despite being less enriched, these motifs 
were important for enhancer activity (Fig. 2c), and, even for more 
abundant motifs, motif enrichment was not always predictive of 
motif importance (Fig. 2d and Supplementary Fig. 11; Methods 
and ref. 60). Overall, these results demonstrate that DeepSTARR 
can discover both abundant motifs but also motifs that are rela-
tively rare in enhancers but still important for enhancer activity, 
and score their specific importance for developmental and house-
keeping enhancers.

Nonequivalent instances of the same TF motif. Since enhanc-
ers often contain several instances of the same motif type, we next 
assessed the contribution of each individual instance of the GATA, 
AP-1, twist, Trl and Dref motifs by DeepSTARR (Supplementary 
Fig. 12a) and by experimental mutagenesis (Supplementary Figs. 9a 
and 12b). Unexpectedly, individual instances of the same motif were 
frequently predicted and experimentally validated to have varying 
degrees of contributions to enhancer activities (defined here as non-
equivalency), both across different enhancers and within the same 
enhancer (Fig. 3a–c and Supplementary Fig. 12).

The enhancer shown in Fig. 3a for example contains three GATA 
instances with very different contributions as predicted and deter-
mined experimentally: the second instance is the most important, 
followed by the first and the third. The agreement between predic-
tions and experiments holds across all 1,013 GATA instances tested 
(PCC = 0.53; Fig. 3b) and the nonequivalency of motif instances is 
widespread: 57% of enhancers with several instances had motifs 
with greater than twofold and 70% with greater than 1.5-fold dif-
ferences (Fig. 3c). These differences are not well captured by 
existing position weight matrix (PWM) motif scores (Fig. 3d and 
Supplementary Fig. 13), suggesting that the importance of motif 
instances depends on complex sequence features outside the core 
motif. Indeed, PWM models performed worse than linear models 
based on predefined motif syntax features or the gkm-SVM models 
(Supplementary Fig. 13). The observation that different instances 
of the same motif type can have vastly different contributions to 
enhancer activity (despite the instances’ identical sequences) 
is an important underappreciated phenomenon that compli-
cates our understanding of enhancer sequences and noncoding  
variants (Discussion).

Flanking sequence influences the importance of TF motifs. To 
explore the syntax features that affect the importance of a motif 
instance, we examined the motif-flanking nucleotides that can 
contribute to enhancer activity12,13,18,37,68–72. Indeed, DeepSTARR 
predicted significant contribution for the flanking sequences 
of important motifs up to ten or more nucleotides (Fig. 4a and 
Supplementary Fig. 14). For each motif type, we then sorted all 
instances by their predicted importance to determine the optimal 
flank length and sequence (Fig. 4a,b and Supplementary Fig. 15). 
For example, important GATAA sequences had a G at position 
+1, whereas nonimportant ones had a T at position +1 and a G 
at position −1 (Fig. 4b). In contrast, up to 5 bp flanking up- and 
downstream affected the importance of Trl instances, with flank-
ing GA-repeats correlating with increased importance (Fig. 4b). 
The flanks of high and low importance motif instances predicted by 
DeepSTARR were largely concordant with those identified by motif 
mutagenesis (Fig. 4c and Supplementary Fig. 15) and refine known 
PWM models for the predicted TFs (Fig. 4c).

To validate experimentally the functional contribution of motif- 
flanking sequence predicted by DeepSTARR, we swapped the flank-
ing nucleotides of strong and weak GATA instances (at least two-
fold difference) in 47 enhancers (Fig. 4d). Indeed, replacing the 2-bp 
flanks of strong instances by the flanks of weak instances reduced 
enhancer activity, whereas replacing the flanks of weak instances by 
the flanks of strong ones increased enhancer activity (Fig. 4d and 
Supplementary Fig. 16a,b). DeepSTARR recapitulated the observed 
effects, that is, the addition of weak flanks converted a strong GATA 
instance to a weak one as indicated by the decreased contribution 
at the nucleotide level, and vice versa for a weak instance that was 
converted to a strong one (Fig. 4e and Supplementary Fig. 16b). 
Swapping 5-bp flanks yielded consistent results with slightly stron-
ger effects (Supplementary Fig. 16a,b). In addition, swapping the 
flanks was sufficient to switch motif contributions, as determined by 
subsequent motif mutagenesis (Supplementary Fig. 16c,d). Thus, as 
DeepSTARR is not biased by previous knowledge about TF motifs but 
is trained on DNA sequence alone, it can not only identify important 
motif types but also refine optimal flanking sequences. These could 
contribute to motif importance via motifs for other TFs, DNA shape 
and nucleosome positioning18, but might also reflect extended motifs 
resulting from partial definition of the original motifs or alternative 
modes of TF binding. For GATAA, our results are most consistent 
with single TF binding mode73,74, and GA-containing flanks for 
GAGAG might increase the avidity of TF binding. Experimentally, 
we confirm that the flanking sequence can be sufficient to switch 
motif contribution and should be considered when assessing motif 
importance or the impact of motif-disrupting mutations.

In silico analysis reveals modes of motif cooperativity. The 
position of TF motifs in the enhancer75 and the distance between 
TF motifs are thought to be important motif syntax features. 
DeepSTARR indeed predicted higher importance for TF motifs at 
the center of the enhancers, which was confirmed by motif muta-
genesis, though the trend was weaker (Supplementary Fig. 17). 
We next determined how the relative distance between two motif 
instances (MotifA/MotifB)—a feature generally associated with 
TF cooperativity6,13,18,49,76–79—contributes to enhancer activity using 
DeepSTARR. We embedded MotifA in the center of synthetic ran-
dom DNA sequences and MotifB at a range of distances from MotifA, 
both up- and downstream, predicted the activity of the result-
ing sequences, and calculated a cooperativity score for each motif 
pair, where a value higher than 1 means positive synergy (Fig. 5a  
and Supplementary Fig. 18a; strategy adapted from ref. 49).

Motif distances indeed had a strong influence on predicted 
enhancer activity and we observed four distinct modes of 
distance-dependent TF motif cooperativity: motif pairs can syner-
gize exclusively at close distances (<25 bp; mode 1), exclusively at 
longer distances (>25 bp; 2), preferentially at closer distances and 
either plateau (3) or decay (4) at long distances (>75 bp; Fig. 5b 
and Supplementary Fig. 18b–d). While all motifs in housekeeping 
enhancers cooperate according to mode 4 (decay), modes 1 to 3 all 
occur for motifs in developmental enhancers (Supplementary Fig. 
18c,d). Interestingly, whether cooperativity followed modes 1, 2 or 3 
depended on the TF and the motif pair (Fig. 5c and Supplementary 
Fig. 18c). For example, ETS and AP-1 TFs always interacted accord-
ing to mode 1 and 3, respectively, and mode 1 of the ETS TFs sug-
gests direct protein–protein interactions with other TFs, which has 
indeed been observed80,81. Interestingly, GATA family TFs display 
more complex behavior and interact according to modes 1, 2 and 
3 depending on the respective partner TF: GATA/ETS synergized 
only when closer than 25 bp (mode 1), whereas GATA/GATA syn-
ergy was lost at short distances (mode 2) and GATA/AP-1 coop-
erated according to mode 3 (Fig. 5c). Thus, DeepSTARR predicts 
distinct modes of motif cooperativity that can determine the contri-
bution of different motif instances.
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We next asked how frequently these optimal intermotif distances 
occur in endogenous enhancers compared with negative regions. 
Motif pairs of housekeeping enhancers followed the optimal spac-
ing rules (enrichment at close distances; Fig. 5b and Supplementary 
Fig. 19a,d), as did some motif pairs in developmental enhancers 
such as GATA/GATA motif pairs that were strongly depleted at 
close and enriched at longer distances (Fig. 5b). However, several 
pairs in developmental enhancers occurred only rarely at optimal 
distances (for example ETS/SREBP and AP-1/GATA; Fig. 5b and 
Supplementary Fig. 19a,c), even though the enhancer activities 
followed the predicted optimal spacing rules also in these cases  
(Fig. 5b and Supplementary Fig. 19). For instance, even though 
ETS/SREBP motifs separated by short distances (<25 bp) were rare, 
such motif pairs were associated with stronger enhancer activity 
than pairs separated by larger distances (75–100 bp; Fig. 5b), vali-
dating the ETS/SREBP motifs’ optimal distance.

To experimentally test the importance of motif pairs at optimal 
versus nonoptimal distances more directly, we mutated either GATA 
or AP-1 motifs at close (<25 bp) and longer (>50 bp) distances to a 
GATA instance (Fig. 5d,e). The results validated the DeepSTARR 
predictions and showed higher importance of GATA/GATA pairs at 
longer (Fig. 5d) and AP-1/GATA pairs at closer distances (Fig. 5e).  
Thus, different motif pairs display distinct distance preferences, 
which dictate the contribution of individual motif instances to over-
all enhancer activity. As endogenous enhancers often contain motif 
pairs at nonoptimal distances, optimal distances only become appar-
ent by our in silico analysis but not in frequency-based analyses.

Motif syntax rules can be generalized to human enhancers. To 
test whether individual instances of the same motif also contrib-
ute differently to enhancer activities in humans and whether motif 
flanks and spacing determine the different contributions, we chose 
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the human colon cancer cell line HCT116 as a model. We selected 
nine TF motifs based on motif enrichment analysis (AP-1, p53, 
MAF, CREB1, ETS, EGR1, MECP2, E2F1 and Ebox/MYC), mutated 
all their instances in 1,083 enhancers and assessed the enhancer 
activity of wildtype and mutant sequences by UMI-STARR-seq 
(Supplementary Fig. 20; Methods). This revealed that AP-1 and p53 
motifs were the most important motifs (median 5.6- and 5.5-fold 
reduction, respectively), followed by MAF (3.1), CREB1 (2), ETS 
(1.9) and EGR1 (1.5), while MeCP2, E2F1 and Ebox/MYC motifs 
had the least impact on enhancer activity (less than 1.5-fold; 
Supplementary Fig. 20d–f). Based on these results, we chose AP-1, 
p53, MAF, CREB1, ETS and EGR1 motifs for the analysis of motif 
instances.

Mutation of hundreds of individual motif instances showed 
that instances of the same TF motif are not functionally equivalent 
(Fig. 6a–c and Supplementary Fig. 21a). For example, the enhancer 
shown in Fig. 6a contains four AP-1 instances with very different 
contributions to enhancer activity as judged by fold-changes after 
motif-instance mutagenesis between 1.2- and 3.8-fold. Interestingly, 
DNase I footprinting data from a related colon cancer cell line 
(RKO82) suggest that the AP-1 instance with low importance was 
not bound endogenously, in contrast to the three important AP-1 
instances (Fig. 6a). Both results generalize to all tested motifs and 
across enhancers: 57% of human enhancers displayed nonequiva-
lent instances of the same motif type (Fig. 6b,c) and TF motif 
instances with DNase I footprints are more important than those 
without (Fig. 6d), supporting the functional differences between 
motif instances at endogenous enhancers.

Having trained a convolutional neural network to learn the motif 
syntax rules for Drosophila enhancers, we wanted to determine if 
the same type of rules also apply to human enhancers. Therefore, 
we generated simple linear models based on these rules to predict 
the contribution of individual motif instances in human enhanc-
ers. Specifically, these models consider the number of instances, the 
motif core and flanking sequence, the motif position relative to the 
enhancer center75 (Supplementary Fig. 22) and the distance to other 
TF motifs (Fig. 6e and Supplementary Fig. 21b,c). Despite their 
simplicity, these models were able to predict motif-instance impor-
tance, with PCCs to experimentally assessed log2 fold-changes 
(log2FC) of 0.67 (p53), 0.61 (ETS), 0.59 (MAF) and 0.52 (AP-1), out-
performing models based solely on PWM scores (Supplementary 
Fig. 21d). The motif flanks and intermotif distances explained on 
average 13.7% and 8.2% of the motif mutations variance, respec-
tively (Supplementary Fig. 21e). For most TFs, motif instances 
closer to an AP-1 or ETS motif were more important, suggesting 
that high cooperativity with these TFs is important in HCT116 
enhancer sequences (Fig. 6e and Supplementary Fig. 21b). This 
was also observed between AP-1 and ETS motifs themselves, where 
mutation of either AP-1 or ETS instances had stronger impact in 
enhancer function if located at close (<25 bp) rather than longer 
distances (>50 bp) from each other (Fig. 6f). Altogether, these 
results confirm that motif-flanking sequences and intermotif dis-
tances dictate the contribution of individual TF motif instances not 
only in Drosophila but also human enhancers (Fig. 6g).

Surprisingly, for AP-1 motifs, which we could assess in both 
species, the Drosophila-trained DeepSTARR model was able to 
predict the importance of individual instances in human enhanc-
ers reasonably well (PCC = 0.42; Supplementary Fig. 23d), and, in 
both species, ETS/AP-1 pairs synergize only at short distances but 
not at longer ones (mode 1; Supplementary Figs. 18c and 23). These 
results suggest that homologous TFs and their motifs might display 
similar rules across species.

Designing synthetic enhancers with desired activities. 
Understanding how DNA sequence encodes enhancer activ-
ity should enable the design of synthetic enhancers with desired 

activity levels. We used DeepSTARR to computationally generate 
synthetic S2 cell developmental enhancers de novo, by predicting 
enhancer activities for 1 billion random 249-bp DNA sequences 
that are not present in the Drosophila genome (Methods). We then 
selected 249 of these sequences spanning different predicted activ-
ity levels and experimentally measured their enhancer activity by 
UMI-STARR-seq in S2 cells, yielding a quantitative agreement of 
PCC = 0.62 (Fig. 7a and Supplementary Fig. 24). DeepSTARR was 
also able to design synthetic enhancers as strong as the strongest 
native S2 developmental enhancers (activity (fold-change over neg-
ative regions) ≈ 500; Supplementary Table 17).

Inspection of the synthetic enhancer sequences suggested that 
their different activity levels correlated not only with motif compo-
sition but also the motif syntax (Fig. 7b). For example, three differ-
ent enhancers, all containing two GATA and two AP-1 motifs, were 
predicted by DeepSTARR and validated experimentally to have very 
different activities (from 0.87 to 630). Interestingly, the strongest 
synthetic enhancer followed the optimal spacing rules predicted by 
DeepSTARR, such as distal GATA instances and proximal AP-1/
GATA and ETS/AP-1 instances, whereas the other two synthetic 
sequences contained motifs in suboptimal syntax, such as distal 
AP-1 instances and proximal GATA instances (Fig. 7b).

Finally, we tested the activity of the three strongest synthetic 
enhancers in different orientations and both upstream and down-
stream of the promoter by luciferase assays (Supplementary Fig. 25). 
Similar to a strong native enhancer, all three synthetic enhancers 
showed strong activity and functioned independently of their orien-
tation and position, thus displaying the defining properties of bona 
fide enhancers1. This proof-of-concept experiment shows that the 
rules learned by DeepSTARR enable the a priori design of synthetic 
enhancers with desired activity levels.

Discussion
Identifying enhancers and characterizing their sequence determi-
nants—the cis-regulatory code—is a long-standing problem. Here, 
we dissect the relationship between enhancer sequence and strength 
for a single model cell type using deep learning. DeepSTARR accu-
rately predicts enhancer activity for two different transcriptional 
programs directly from DNA sequence and reveals important 
aspects of the cis-regulatory code.

The discovery that relatively rare sequence features can be impor-
tant for enhancer activity highlights the potential of deep-learning 
models that are not based on statistical over-representation49,83. 
The fact that identical instances of the same TF motif typically 
make nonequivalent contributions to enhancer activity is equally 
important. Although not all motif instances in large genomes can 
be equivalent given that many are not bound22,67,84, their nonequiva-
lence in the same enhancer is surprising. In fact, previous studies 
and computational models have typically considered different motif 
instances solely according to their PWM scores or even as equiva-
lent17,27,85. Instead, the contribution of motif instances depends on 
higher-order syntax rules that are not captured by traditional PWM 
models, which is in line with the limitations of PWM models for 
predicting the effects of noncoding variants on TF binding in vitro86 
and the improved performance of deep-learning models to predict 
motif instances bound in vivo49,59. The finding that motif instances 
need to be analyzed in their cis-regulatory context is crucial for our 
ability to interpret the impact of disease-related sequence variants, 
which typically affect only individual motif instances.

Motif nonequivalency as well as the importance of motif flanks 
and distances generalize from Drosophila to human enhancers and 
for AP-1 motifs, which we could assess in both species, even the 
specific rules are shared. This suggests that both species share the 
same types of enhancer syntax rules and even some specific rules 
and it will be interesting to see how cell-type- and species-specific 
rules derive from a shared framework of general enhancer syntax. 
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Similarly, it will be interesting to see how the models for housekeep-
ing enhancers generalize as they have both Drosophila-specific and 
shared motifs (for example DRE and TCT87).

Although libraries of synthetic elements have been used to 
explore enhancer structure71, it has remained challenging to build 
fully synthetic enhancers with defined functional characteristics. 
DeepSTARR trained on S2 cell enhancers allowed the de novo 
design of synthetic enhancers with desired activity levels in S2 
cells. The synthetic enhancers are of similar complexity as endog-
enous enhancers in the training set, for example in terms of motif 
number and diversity, and we speculate that they also show similar 
in vivo activity patterns, namely activity in mesodermal cell types 
and tissues (Supplementary Fig. 26). Moreover, the observation that 
a vast number of different sequences can have similar enhancer 
strengths highlights the flexibility of regulatory sequences and the 
evolutionary opportunities this provides. We expect that combining 
DeepSTARR with emerging algorithms that allow the direct gen-
eration of DNA sequences from deep-learning models56 will pro-
vide unanticipated opportunities for the engineering of synthetic 
enhancers.

The performance of DeepSTARR in predicting enhancer 
strengths and nucleotide importance suggests that it captures the 
sequence-to-function relationship of S2 cell enhancers exceedingly 
well. Indeed, its genome-wide prediction accuracy approaches the 
similarity between biological replicates, and we expect that fur-
ther improvements might require complementary synthetic train-
ing data. Interestingly however, the motif syntax features discussed 
here (TF motif combinations, flanks and distances) likely capture 
less information than DeepSTARR. For example, a linear model 
using these features cannot discriminate important from nonim-
portant motif instances as well as DeepSTARR can (Supplementary 
Fig. 13) and would, on its own, overpredict motif instances outside 
enhancers (Supplementary Fig. 27), suggesting that DeepSTARR 
captures additional and potentially more complex rules. In addi-
tion to improving deep-learning models such as DeepSTARR, a key 
challenge will therefore be the understanding of the models and the 
features they learn through new interpretation tools83.

Our work is complementary to recent efforts modeling other 
aspects of enhancer biology using deep learning45–55,88. These 
include DNA accessibility46–48,50,52,53,55, histone modifications48,50,52,89,90 
or TF binding45,49,50,52,59, which are prominent features of enhancer 
chromatin that correlate well but not perfectly with enhancer activ-
ity and strength (Supplementary Fig. 28; see also refs. 36,63,91). While 
the models are not directly comparable due to the use of distinct  

cell- and datatypes, they derive their predictive power from simi-
lar types of features, including TF motifs45,46,49 and their combina-
tions47,53,55 and distances49. An important future question is therefore 
to what extent enhancer chromatin and activity are determined by 
the same or different DNA sequence features and whether these 
similarities and differences can be modeled. Such models could 
not only explain prominent differences between chromatin states 
and enhancer activities but potentially even allow the predic-
tion of enhancer activity for cell types for which only chromatin 
state-information is available.

Understanding and modeling the similarities and differences 
between enhancer chromatin and activity should also provide the 
means to address the next key challenge in the field: the general-
ization of predictive models from individual deeply characterized 
model cell lines to all cell types of an organism. This task is chal-
lenging because enhancer activities are inherently cell-type-specific 
such that the underlying sequence rules must also differ between 
cell types, at least to some extent. Recent efforts to map DNA acces-
sibility and other chromatin features for many cell types92–94 and 
the respective sequence models could be integrated with models of 
enhancer activity and strengths, potentially allowing quantitative 
predictions of enhancer activities in many cell types. We anticipate 
that these will be further combined with models for promoters42,43 
and other cis-regulatory elements (for example, insulators or silenc-
ers) as well as models that predict gene transcription from enhancer 
activities (for example the ABC model95) or the wider genomic 
sequence context (for example, Enformer50) towards ultimately 
understanding how our genomes store gene-regulatory information 
to dictate gene expression and development.
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Methods
UMI-STARR-seq library cloning. Inserts for Drosophila genome-wide and 
oligonucleotide libraries were ampli#ed (for primers, see Supplementary Table 
1) and cloned into the Drosophila STARR-seq vector63 containing either the 
Drosophila synthetic core promoter (DSCP) or Rps12 core promoters using Gibson 
cloning (New England BioLabs, catalog no. E2611S). $e oligonucleotide library 
for human STARR-seq screens was ampli#ed (for primers, see Supplementary 
Table 1) and cloned into the human STARR-seq plasmid with the ORI in place of 
the core promoter98. Genome-wide and oligonucleotide libraries were grown in 6 l 
and 2 l LB-Amp (Luria-Bertani medium plus ampicillin, 100 µg/ml), respectively, 
and puri#ed with a Qiagen Plasmid Plus Giga Kit (catalog no. 12991).

Cell culture, transfection and UMI-STARR-seq. Drosophila S2 and human 
HCT116 cells were cultured as described previously63,98. Cells were electroporated 
using the MaxCyte-STX system at a density of 50 × 107 cells per 100 µl and 5 µg 
of DNA using the ‘Optimization 1’ protocol (S2) and at a density of 1 × 107 cells 
per 100 µl and 20 µg of DNA using the preset ‘HCT116’ program (HCT116), 
respectively. We transfected 400 × 106 S2 cells total per replicate with 20 μg of the 
input library for Drosophila and 80 × 106 HCT116 cells total per replicate with 
160 µg of the input library for human cells. UMI-STARR-seq was performed 
as described previously63,64,98. Further experimental details can be found in the 
Supplementary Methods.

Illumina sequencing. Next-generation sequencing was performed at the VBCF 
NGS facility on an Illumina HiSeq 2500, NextSeq 550 or NovaSeq SP platform, 
following the manufacturer’s protocol, using standard Illumina i5 indexes as well as 
UMIs at the i7 index.

Genome-wide UMI-STARR-seq data analysis. RNA and DNA input reads were 
mapped to the Drosophila genome (dm3), excluding chromosomes U, Uextra, and 
the mitochondrial genome, using Bowtie v.1.2.2 (ref. 99). Mapping reads with up to 
three mismatches and a maximal insert size of 2 kb were kept. For paired-end RNA 
reads that mapped to the same positions, we collapsed those that have identical 
UMIs (10 bp, allowing one mismatch) to ensure the counting of unique reporter 
transcripts (Supplementary Table 2). After processing the two biological replicates 
separately, we pooled both replicates for developmental and housekeeping screens 
for further analyses.

Peak calling was performed as described previously63. Peaks that had a 
hypergeometric P value ≤0.001 and a corrected enrichment over input (corrected 
to the conservative lower bound of a 95% confidence interval) greater than 3 were 
defined as enhancers and resized to 249 bp (Supplementary Table 3). Noncorrected 
enrichment over input was used as enhancer activity metric. Enhancers were 
classified as developmental or housekeeping based on the screen with the  
highest activity.

Oligonucleotide library UMI-STARR-seq data analysis. RNA and DNA input 
reads were mapped to a reference containing 249-bp long sequences containing 
both wildtype and mutated fragments from the Drosophila or human libraries 
using Bowtie v.1.2.2 (ref. 99). Mapping reads with the correct length, strand and 
with no mismatches were kept. Both DNA and RNA reads were collapsed by UMIs 
(10 bp) as above (Supplementary Table 2).

We excluded oligonucleotides with fewer than ten reads in any of the input 
replicates and added one read pseudocount to oligonucleotides with zero RNA 
counts. The enhancer activity of each oligonucleotide in each screen was calculated 
as the log2FC over input, using all replicates, with DESeq2 (ref. 100).

Deep-learning data preparation. The genome was binned into 249-bp windows 
with a stride of 100 bp, excluding chromosomes U, Uextra, and the mitochondrial 
genome. We selected all windows at the summit of developmental and 
housekeeping enhancers, in addition to three windows on either side of the regions 
and a diversity of inactive sequences (Supplementary Methods). We augmented our 
dataset by adding the reverse complement of each original sequence, with the same 
output, ending up with 242,026 examples (484,052 postaugmentation). Sequences 
from the first (40,570; 8.4%) and second half of chr2R (41,186; 8.5%) were held out 
for validation and testing, respectively.

DeepSTARR model architecture and training. DeepSTARR was designed as a 
multitask convolutional neural network (CNN) that uses one-hot-encoded 249-bp 
long DNA sequence (A = [1,0,0,0], C = [0,1,0,0], G = [0,0,1,0], T = [0,0,0,1]) to 
predict both its developmental and housekeeping enhancer activities (Fig. 1c). 
We adapted the Basset CNN architecture46 and built DeepSTARR with four 
one-dimensional (1D) convolutional layers (filters = 246, 60, 60, 120; size = 7, 3, 5, 
3), each followed by batch normalization, a ReLU nonlinearity, and max-pooling 
(size = 2). After the convolutional layers, there are two fully connected layers, each 
with 256 neurons and followed by batch normalization, a ReLU nonlinearity, and 
dropout where the fraction is 0.4. The final layer mapped to both developmental 
and housekeeping outputs. Further details on model training, hyperparameter 
tuning and performance evaluation can be found in the Supplementary Methods. 
The performance of DeepSTARR in the test set sequences was also compared with 

two different methods: a gapped k-mer support vector machine (gkm-SVM)35 and 
a lasso regression model based on TF motif counts.

Nucleotide contribution scores and motif discovery. We used DeepExplainer 
(the DeepSHAP implementation of DeepLIFT57,65,66; update from https://
github.com/AvantiShri/shap/blob/master/shap/explainers/deep/deep_tf.py) to 
compute contribution scores for all nucleotides in all sequences with respect 
to either developmental or housekeeping enhancer activity. We used 100 
dinucleotide-shuffled versions of each input sequence as reference sequences. 
For each sequence, the obtained hypothetical importance scores were multiplied 
by the one-hot-encoded matrix of the sequences to derive the final nucleotide 
contribution scores.

To consolidate motifs, we ran TF-Modisco (v.0.5.12.0 (ref. 58)) on the nucleotide 
contribution scores for each enhancer type separately using all developmental or 
housekeeping enhancers. We specified the following parameters: sliding_window_
size=15, flank_size=5, max_seqlets_per_metacluster = 50,000 and TfModiscoSeql
etsToPatternsFactory(trim_to_window_size = 15, initial_flank_to_add = 5). Motifs 
supported by less than 35 seqlets were discarded.

Reference compendium of nonredundant TF motifs. A total of 6,502 TF motif 
models were obtained from iRegulon (http://iregulon.aertslab.org/collections.
html (ref. 101)). We systematically collapsed redundant motifs by similarity by a 
previously described approach82. The code and TF motif compendium are available 
from https://github.com/bernardo-de-almeida/motif-clustering. Details on TF 
motif enrichment analyses in developmental and housekeeping enhancers can be 
found in the Supplementary Methods.

Drosophila TF motif mutagenesis oligonucleotide library synthesis and 
UMI-STARR-seq. We computationally designed a Drosophila enhancers’ motif 
mutagenesis oligonucleotide library containing 524 negative genomic regions; 
5,082 wildtype enhancers; variants of 2,375 enhancers with mutations of all 
instances simultaneously (per motif type) or each instance individually for eight 
developmental motifs (GATA, AP-1, twist, Trl, SREBP, CREB, ETS, STAT), four 
housekeeping motifs (Dref, Ohler1, Ohler6, Ohler7) and three control motifs; 
scanning mutagenesis of five enhancers; variants with swapped GATA motif 
flanks for 100 enhancers and 249 synthetic enhancer sequences (Supplementary 
Table 5). All details can be found in the Supplementary Methods. The resulting 
21,758-plex 300-mer oligonucleotide library was synthesized by Twist Bioscience. 
UMI-STARR-seq using this oligonucleotide library was performed and analyzed 
as described above. We performed three independent replicates for developmental 
and housekeeping screens (correlation PCC = 0.94–0.98).

TF motif mutation analysis and equivalency. From the candidate 249 bp 
enhancers, we identified 855 active developmental and 905 active housekeeping 
Drosophila enhancers (log2 wildtype activity in oligonucleotide UMI-STARR-seq 
≥3.15 and 2.51, respectively; the strongest negative region in each screen) that 
we used in the subsequent TF motif mutation analyses. The impact of mutating 
all instances of a TF motif type simultaneously or each instance individually was 
measured as the log2FC enhancer activity between the respective mutant and 
wildtype sequences (Supplementary Tables 6 and 8). This was done separately for 
developmental and housekeeping enhancer activities.

Motif nonequivalency across all enhancers or in the same enhancer was 
assessed by comparing the impact of mutating individual instances of the same 
TF motif, that is the log2FCs of each instance (Supplementary Table 8). For 
the comparison between instances in the same enhancer, only enhancers that 
require the TF motif (greater than twofold reduction in activity after mutating 
all instances) and contain two or more instances were used. Motif instances with 
greater than twofold different contributions in the same enhancer were considered 
as nonequivalent. The same comparison across enhancers or in the same enhancer 
was performed for the three control motifs.

DeepSTARR predicted global importance of motif types. To quantify the global 
importance of all known TF motifs to enhancer activity in silico60, we embedded 
each motif from the 6,502 TF motif compendium at five different locations and in 
both orientations in 100 random backbone DNA sequences and predicted their 
developmental and housekeeping enhancer activity with DeepSTARR. For each 
motif, we used the sequence corresponding to the highest affinity according to the 
annotated PWM models. The average activity across the different locations per 
backbone was divided by the backbone initial activity to get the predicted increase 
in enhancer activity per TF motif. The resultant log2FC was averaged across all 100 
backbones to derive the final global importance of each TF motif.

DeepSTARR predictions for the contribution of motif instances. We used 
two complementary approaches to measure the predicted contribution of each 
motif instance by DeepSTARR: (1) we measured the predicted importance of all 
string-matched instances of each TF motif type as the average developmental or 
housekeeping DeepSTARR contribution scores over all its nucleotides (used in 
Fig. 4a–c and Supplementary Figs. 8a, 12a,c, 14a and 15); (2) to directly compare 
with the experimentally derived motif importance through motif mutagenesis, we 
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used DeepSTARR to predict the log2FC between wildtype and the motif-mutant 
enhancer sequences included in the oligonucleotide library for all instances of the 
different motif types (used in Fig. 3b,d and Supplementary Figs. 13 and 17a).

Scoring of TF motif instances with PWM motif scores. To assess how the PWM 
motif models predict the importance of a motif instance, we scored the wildtype 
sequence of each mutated motif instance with the PWM models of the selected TF 
motifs. We used the matchMotifs function from R package motifmatchr (v.1.4.0; 
genome = ‘BSgenome.Dmelanogaster.UCSC.dm3’, bg = ‘even’, ref. 102) with a P value 
cutoff of 1 to retrieve the PWM scores of all sequences. We tested different PWM 
models for each TF motif, if available, and reported always the one with the best 
correlation (Supplementary Table 10).

Predicted contribution of motif-flanking nucleotides. The top 90th and bottom 
10th percentile motif instances of each TF were selected based on their predicted 
(DeepSTARR scores for core sequence) or experimentally derived (minus signed 
(–) mutation log2FC) importance. The DeepSTARR contribution scores of their 
±50 flanking nucleotides were shown using box plots (Fig. 4a and Supplementary 
Fig. 14). For each position, significant differences between top and bottom 
instances were assessed through a Wilcoxon rank-sum test (P < 0.001). The sum 
of delta between medians of top and bottom instances for the positions with 
significant differences was used as measure of importance for the upstream and 
downstream flanking sequences.

Correlation between motif importance and motif-flanking sequence. 
String-matched motif instances of each TF were sorted by their predicted 
(DeepSTARR) or experimentally derived (minus signed (–) mutation log2FC) 
importance. Their five flanking nucleotides were shown using heatmaps, and the 
importance of each nucleotide at each flanking position summarized using box 
plots (Fig. 4b and Supplementary Fig. 15). Significant differences between the four 
nucleotides per position were assessed through Welch one-way analysis of variance 
(ANOVA) test followed by false discovery rate (FDR) multiple testing correction.

The motifs recovered by DeepSTARR were compared with PWM models 
discovered de novo by HOMER. HOMER (v.4.10.4 (ref. 103)) was run on the 249-bp 
developmental or housekeeping enhancer regions with the findMotifsGenome.pl 
command and the command line argument –size 249.

In silico motif distance preferences. Two consensus TF motifs were embedded 
in 60 random backbone 249-bp DNA sequences, MotifA in the center and MotifB 
at a range of distances (d) from MotifA, both up- and downstream. DeepSTARR 
was used to predict the developmental or housekeeping activity of the backbone 
synthetic sequences (1) without any motif (b), (2) only with MotifA in the center 
(A), (3) only with MotifB d-bases up- or downstream (B) and (4) with both MotifA 
and MotifB (AB). The DeepSTARR predicted activities in log space were converted 
to linear space as 2DeepSTARR prediction. The cooperativity between MotifA and MotifB 
at each distance d was then defined as the fold-change between AB and (b + (A–b) 
+ (B–b) = A + B–b), where a value of 1 means an additive effect or no synergy 
between the motifs, and a value higher than 1 means positive synergy. The median 
of fold-changes across the 60 backbones was used as the final cooperativity scores.

Enrichment of motif pairs at different distances in genomic enhancers. To 
compute whether MotifA is located within a certain distance (bins: 0–25, 25–50, 
50–75, 75–100, 100–125, 125–150, 150–250 bp) of MotifB more or less frequently 
in enhancers than in negative sequences, we counted the number of times a MotifA 
instance is at each distance bin to a MotifB instance in enhancers and in negative 
sequences. The enrichment or depletion of motif pairs at each bin was tested with 
two-sided Fisher’s exact test and the log2 odds ratio used as metric. Obtained P 
values were corrected for multiple testing by Benjamini–Hochberg procedure and 
considered significant if FDR ≤ 0.05.

Association between motif pair distances and enhancer activity. For each pair 
of motif instances at each distance bin (0–25, 25–50, 50–75, 75–100, 100–125, 
125–150, 150–250 bp), we tested the association between enhancer activity and the 
presence of the pair at the respective distance bin using a multiple linear regression, 
including as independent variables the number of instances for the different 
developmental or housekeeping TF motif types. The linear model coefficient was 
used as metric and considered significant if the FDR-corrected P values ≤0.05.

Human TF motif mutagenesis oligonucleotide library synthesis and 
UMI-STARR-seq. We selected the nine TF motif types with the strongest 
enrichment in enhancers in human HCT116 cells98: AP-1, p53, MAF, CREB1, ETS, 
EGR1, MECP2, E2F1 and Ebox/MYC (Supplementary Table 12 and Supplementary 
Methods). We selected 3,200 enhancer candidates, defining short 249-bp windows 
(the limits of oligonucleotide synthesis), and mapped the position of all instances 
of the nine TF motif types in these candidates using the matchMotifs function 
from R package motifmatchr (v.1.4.0 (ref. 102)) with the following parameters: 
genome = ‘BSgenome.Hsapiens.UCSC.hg19’, p.cutoff = 5e−04, bg = ‘genome’. 
Overlapping instances (minimum 70%) for the same TF motif were collapsed. We 
also mapped all instances of four control motifs using string-matching.

We computationally designed the human enhancers’ motif mutagenesis 
oligonucleotide library containing: 920 249-bp negative genomic regions as 
controls; 3,200 wildtype enhancers; and 18,780 enhancer variants with all instances 
of each motif type mutated simultaneously or individually to a motif shuffled 
variant (Supplementary Table 13). All details can be found in the Supplementary 
Methods. Apart from the specific sequences, this human motif mutagenesis library 
exhibits the same specifications as the Drosophila library and was also synthesized 
by Twist Bioscience. UMI-STARR-seq using this oligonucleotide library was 
performed and analyzed as described above. We performed two independent 
replicates (correlation PCC = 0.99).

Human TF motif mutation analysis. From the 3,200 designed candidate 249-bp 
enhancers, we identified 1,083 active short human enhancers (log2 wildtype activity 
in oligonucleotide UMI-STARR-seq ≥ 2.03, the strongest negative region) that we 
used in the subsequent TF motif analyses. The impact of mutating all instances of 
a TF motif type simultaneously or each instance individually was calculated as the 
log2FC enhancer activity between the respective mutant and wildtype sequences 
(Supplementary Tables 14 and 15). Motif nonequivalency across all enhancers or in 
the same enhancer was assessed as in the Drosophila enhancers.

Validation of important TF motif instances with genomic DNase I footprinting 
data. We compared the importance of individual motif instances with genomic 
DNase I footprinting data of RKO cells (another human colon cancer cell line; 
https://www.vierstra.org/resources/dgf (ref.82)), as a surrogate for TF occupancy. 
For each TF motif type, a Wilcoxon rank-sum test was used to determine whether 
the mutation log2FC of instances overlapping TF footprints (FPR threshold of 
0.001) is significantly greater or less than the one of instances not overlapping 
footprints. Only instances in HCT116 accessible enhancers were used in the 
analysis.

Association between motif syntax rules and the contribution of TF motif 
instances. For each TF motif type, we built a multiple linear regression model to 
predict the contribution of its individual instances (log2FCs) using as covariates the 
number of instances of the respective motif type in the enhancer, the motif core 
(defined as the nucleotides included in each TF motif PWM model) and flanking 
nucleotides (5 bp on each side), the motif position relative to the enhancer center75, 
and the distance to all other TF motifs. All models were built using the Caret R 
package (v. 6.0–80 (ref. 104)) and tenfold cross-validation. Predictions for each 
held-out test set were used to compare with the observed log2FCs and assess model 
performance. The linear model coefficients and respective P values were used as 
metrics of importance for each feature.

Luciferase reporter assays. We constructed luciferase reporters by cloning 
candidate enhancers in both orientations in the pGL3_DSCP_luc+ plasmid 
either upstream or downstream of the DSCP promoter. One native enhancer, 
the three strongest synthetic enhancers and five negative controls were amplified 
from the Twist oligonucleotide pools and plasmids verified by Sanger sequencing 
(for primers, see Supplementary Table 1). Luciferase assays were performed in 
quadruplicates as described previously105.

Luciferase assay data analysis. We first normalized firefly over Renilla luciferase 
values for each of the eight biological replicates individually. To normalize to the 
core promoters’ intrinsic activity, we then calculated the fold-change luciferase 
signal over the average signal of the five negative control sequences. For each 
enhancer candidate and construct, we used the average of the replicates as the final 
activity together with the s.d. (Supplementary Table 18).

Statistics and data visualization. All statistical calculations and graphical displays 
were performed in R statistical computing environment (v.3.5.1 (ref. 106)) and using 
the R package ggplot2 (v.3.2.1 (ref. 107)). Coverage data tracks have been visualized 
in the UCSC Genome Browser108 and used to create displays of representative 
genomic loci. In all box plots, the central line denotes the median, the box 
encompasses 25th to 75th percentile (interquartile range) and the whiskers extend 
to 1.5× interquartile range.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw sequencing data are available from GEO (https://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE183939. Data used to train and 
evaluate the DeepSTARR model as well as the final pretrained model are 
found on zenodo at https://doi.org/10.5281/zenodo.5502060. The pretrained 
DeepSTARR model is also available in the Kipoi model repository109 (http://
kipoi.org/models/DeepSTARR/). Genome browser tracks showing genome-wide 
UMI-STARR-seq and DeepSTARR predictions in Drosophila S2 cells, including 
nucleotide contribution scores for all enhancer sequences, together with the 
enhancers used for mutagenesis, mutated motif instances and respective log2FC 
in enhancer activity, are available at https://genome.ucsc.edu/s/bernardo.
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almeida/DeepSTARR_manuscript. Dynamic sequence tracks (https://github.
com/pkerpedjiev/higlass-dynseq) and contribution scores are also available as a 
Reservoir Genome Browser session at https://resgen.io/paper-data/Almeida...%20
2021%20-%20DeepSTARR/views. TF motif models were obtained from iRegulon 
(http://iregulon.aertslab.org/collections.html (ref. 101)). DNase-seq and ATAC-seq 
data in Drosophila S2 cells were obtained from refs. 63 and 110, respectively; nascent 
transcription from ref. 111 and H3K4me1 and H3K27ac chromatin marks from  
ref. 112. RepeatMasker dm3 annotations were obtained from http://www.
repeatmasker.org/genomes/dm3/RepeatMasker-rm405-db20140131/dm3.fa.out.
gz. Genomic DNase I footprinting data of RKO cells were downloaded from 
https://resources.altius.org/~vierstra/projects/footprinting.2020/per.dataset/h.
RKO-DS40362/. HCT116 DNase-seq, H3K27ac and H3K4me1 data were 
obtained from ENCODE97 (https://www.encodeproject.org/; ENCFF001SQU, 
ENCFF001WIJ, ENCFF001WIK, ENCFF175RBN, ENCFF228YKV, 
ENCFF851NWR, ENCFF927AHJ, ENCFF945KJN, ENCFF360XGA, 
ENCFF130JBP and ENCFF400KKD) and ATAC-seq data from ref. 96.

Code availability
Code used to process the genome-wide and oligonucleotide UMI-STARR-seq 
data, train DeepSTARR and predict the enhancer activity for new DNA sequences, 
as well as to reproduce the results, is available on GitHub (https://github.com/
bernardo-de-almeida/DeepSTARR). The code and TF motif compendium are 
available from https://github.com/bernardo-de-almeida/motif-clustering.
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Supplementary	Figures	

Supplementary	 Figure	 1.	 Additional	 performance	 evaluation	 of	 DeepSTARR	
predictions.	

A-B)	 DeepSTARR	 predicts	 enhancer	 activity	 genome-wide.	 Genome	 browser	 screenshot
depicting	UMI-STARR-seq	observed	(top)	and	predicted	(bottom)	profiles	for	both	promoters
(development,	red;	housekeeping,	blue)	for	two	loci	located	on	held-out	test	chromosome	2R.
C) DeepSTARR	predicts	enhancer	activity	quantitatively.	Left:	Scatter	plots	of	predicted	vs.
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observed	developmental	(top)	and	housekeeping	(bottom)	enhancer	activity	signal	across	all	
DNA	 sequences	 in	 the	 train,	 validation	 and	 test	 set	 chromosomes.	 Right:	 Scatter	 plots	 of	
developmental	 (top)	 and	 housekeeping	 (bottom)	 enhancer	 activity	 signal	 between	 two	
biological	replicates	across	all	DNA	sequences	in	the	test	set	chromosome.	Color	reflects	point	
density.	The	Pearson	correlation	coefficient	(PCC)	and	mean	squared	error	(MSE)	are	denoted	
for	 each	 comparison.	D)	 DeepSTARR	performed	better	 than	methods	based	on	 known	TF	
motifs	 or	 unbiased	 k-mers.	 Left:	 Comparison	 of	 different	 models	 for	 predicting	 enhancer	
activity.	 Bar-plots	 with	 the	 PCC	 between	 observed	 and	 predicted	 activities	 for	 both	
developmental	 and	housekeeping	enhancer	 types	across	all	DNA	sequences	 in	 the	 test	 set	
chromosome.	PCC	between	replicates	is	also	shown.	Middle:	Bar-plots	with	the	auPRC	for	the	
classification	of	enhancer	sequences	from	the	test	set	for	the	different	models,	compared	with	
the	expected	by	a	random	model.	Right:	precision-recall	curve	for	the	different	models	on	test	
data.	Error	bars	represent	the	mean	values	+/-	5th	and	95th	percentiles	of	the	performance	of	
1000	DeepSTARR	models.	PCC:	Pearson	correlation	coefficient,	R2:	R-squared,	auPRC:	area	
under	 precision-recall	 curve.	 E-F)	 Scatter	 plots	 of	 predicted	 (gkm-SVM	 (E)	 and	 TF	motifs	
Lasso	 (F))	 vs.	 observed	 developmental	 (left)	 and	 housekeeping	 (right)	 enhancer	 activity	
signal	across	all	DNA	sequences	in	the	test	set	chromosome.	The	PCC	and	MSE	are	denoted	for	
each	comparison.	
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Supplementary	Figure	2.	Comparison	of	different	model	architecture	choices.	

Performance	comparison	between	models	with	varying	number	of	convolutional	and	dense	
layers	(A),	number	of	convolutional	filters	of	the	first	layer	(B),	and	size	of	the	convolutional	
filter	of	the	first	layer	(C)	(see	Methods).	For	each	combination	of	parameters,	we	trained	at	
least	 10	 different	 models	 and	 assessed	 their	 performance	 (average	 PCC)	 on	 predicting	
enhancer	activity	(validation	set,	separately	for	developmental	and	housekeeping)	and	motif	
importance	 (motif	mutation	 fold-changes,	 average	 across	 TF	motifs).	 This	 revealed	 that	 2	
convolutional	layers	are	minimally	required	to	accurately	predict	enhancer	activity,	while	3	
are	minimally	required	to	predict	motif	importance	(DeepSTARR	has	4)	(A).	The	number	of	
dense	layers	has	little	impact	in	predicting	enhancer	activity,	while	2	are	required	for	better	
prediction	of	motif	importance	(A).	256	or	512	convolutional	filters	(B)	of	size	7	(C)	in	the	
first	layer	are	optimal	but	these	parameters	showed	overall	lower	importance.	
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Supplementary	Figure	3.	Performance	evaluation	of	DeepSTARR’s	predictions	 in	
test	set	excluding	repeats.	

Scatter	plots	of	DeepSTARR	predicted	vs.	observed	developmental	(A)	and	housekeeping	(B)	
enhancer	 activity	 signal	 across	 32,036	 DNA	 sequences	 in	 the	 test	 set	 chromosome	 not	
overlapping	with	repeats.	The	PCC	is	denoted	for	each	comparison.	

S3 - Performance evaluation of DeepSTARR’s predictions 
in test set excluding repeats

BA
32,036 genomic bins from the test set not overlapping with repeats

HousekeepingDevelopmental
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Supplementary	 Figure	 4.	 Additional	 performance	 evaluation	 of	 DeepSTARR’s	
predictions.	

Comparison	of	different	models	for	predicting	enhancer	activity.	Bar-plots	with	the	PCC	(left)	
and	 MSE	 (right)	 between	 observed	 and	 predicted	 activities	 for	 both	 developmental	 and	
housekeeping	 enhancer	 types	 across	DNA	 accessible	 regions	 (A)	 or	 enhancers	 (C)	 in	 test	
chromosome.	 Error	 bars	 represent	 the	 mean	 values	 +/-	 5th	 and	 95th	 percentiles	 of	 the	
performance	of	1000	DeepSTARR	models.		Respective	scatter	plots	shown	in	(B,D).	
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Supplementary	Figure	5.	DeepSTARR	predicts	important	nucleotides	in	enhancers	
as	measured	by	scanning	mutagenesis	experiments.	

A) Scanning	 mutagenesis	 was	 performed	 by	 scrambling	 the	 nucleotides	 within	 10	 bp
windows	with	5	bp	steps.	The	activity	of	the	different	variants	was	measured	experimentally
by	UMI-STARR-seq	and	predicted	by	DeepSTARR.	B)	Scatter	plots	of	predicted	vs.	observed
log2	 fold-change	 (log2	 FC)	 enhancer	 activity	 (color	 scale)	 for	 each	 variant	 of	 four
developmental	and	one	housekeeping	enhancer.	The	PCC	is	denoted	for	each	comparison.	C)
Observed	(UMI-STARR-seq;	 top)	and	predicted	(middle)	 log2	FC	for	each	10	bp	scrambled
windows,	together	with	the	DeepSTARR	derived	nucleotide	contribution	scores	(bottom)	for
the	 developmental	 enhancer	 chr3R:14743772-14744020.	 CREB/ATF,	 GATA	 and	 Trl	motif
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instances	 are	 highlighted.	 D)	 Bar-plots	 with	 the	 PCC	 between	 observed	 and	 predicted	
mutagenesis	effects	(log2	FC)	for	DeepSTARR	and	gkm-SVM	models.	

Supplementary	Figure	6.	Overview	of	motifs	discovered	by	TF-Modisco.	

All	discovered	developmental	(top)	and	housekeeping	(bottom)	motifs	are	shown	from	left	to	
right	with:	number	of	seqlets	supporting	the	motif,	average	contribution	scores,	converted	
PWM	logo,	their	closest	database	match	and	respective	motif	name.	
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Supplementary	 Figure	 7.	 Developmental	 and	 housekeeping	 enhancers	 are
enriched	in	different	TF	motifs.	

A) Hierarchically	 clustered	 heat	 map	 of	 the	 pairwise	 similarity	 scores	 between	 6,502	 TF
motifs.	The	cluster	dendrogram	was	cut	at	height	0.8,	resulting	in	901	non-redundant	motif
clusters	that	were	manually	annotated.	B-E)	Exemplar	TF	motif	clusters.	F)	Enrichment	of	TF
motifs	 in	developmental	 (left)	 and	housekeeping	 (right)	 enhancers	over	negative	genomic
regions.	Log2	two-sided	Fisher’s	exact	test	odds	ratio	compared	with	significance	(-log10	p-
value)	for	the	most	significant	TF	motif	per	motif	cluster,	to	remove	motif	redundancy.	Motifs
significantly	(FDR-corrected	p-value	<0.05)	enriched	or	depleted	are	highlighted.	G)	Scatter
plot	comparing	the	motif	enrichment	(log2	odds	ratio)	in	developmental	and	housekeeping
enhancers.	To	remove	motif	redundancy,	only	the	most	significant	TF	motif	per	motif	cluster
was	shown.	Motifs	significantly	(FDR<0.05)	enriched	or	depleted	in	each	or	both	enhancer
types	are	highlighted.
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Supplementary	 Figure	 8.	 DeepSTARR	 identifies	 candidate	 repressor	 motifs	 of	
expressed	TFs.	

A) Distributions	 of	 the	 DeepSTARR	 predicted	 developmental	 (top)	 and	 housekeeping
(bottom)	 contribution	 scores	 of	 instances	 (average	 over	 all	 its	 nucleotides)	 of	 different
repressive	TF	motif	 types	across	developmental	enhancers	 (red),	housekeeping	enhancers
(blue)	and	negative	genomic	regions	(grey).	Six	motifs	from	TFs	expressed	(left:	ttk,	da,	lola)
or	not	expressed	(right:	kni,	Kr,	en)	in	S2	cells	are	shown,	with	their	respective	motif	strings
shown	 in	 parentheses.	 The	 box	 plots	 mark	 the	 median,	 upper	 and	 lower	 quartiles	 and
1.5× interquartile	range	(whiskers).	ttk,	n	=	36/24/724	independent	instances	per	box;	da,	n
=	362/461/3296;	lola,	n	=	124/137/1169;	kni,	n	=	98/48/253;	Kr,	n	=	769/430/2903;	en,	n
=	921/119/3760.	B)	DeepSTARR	derived	developmental	nucleotide	contribution	scores	for
three	enhancers	with	the	activator	and	repressive	TF	motifs	highlighted.
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Supplementary	Figure	9.	Large-scale	systematic	TF	motif	mutagenesis.	

A) Overview	 of	 the	 (1)	 design,	 (2)	 synthesis	 and	 (3)	 UMI-STARR-seq	 screen	 of	 the
mutagenesis	oligo	library.	UMI-STARR-seq	was	performed	with	a	developmental	(red)	and	a
housekeeping	(blue)	promoter	in	D.	melanogaster	S2	cells.	B)	Pairwise	comparisons	of	input
(top)	and	UMI-STARR-seq	(bottom)	signal	between	three	independent	biological	replicates
across	all	oligos	included	in	the	library	with	a	developmental	(left)	or	housekeeping	(right)
promoter.	Axes	 show	counts	per	million	 in	 logarithmic	 scale.	The	PCC	 is	denoted	 for	each
comparison.	 C)	 Motif	 requirements	 are	 independent	 of	 motif	 mutant	 variants.	 Pairwise
comparisons	 of	 log2	 fold-change	 (log2	 FC)	 to	 wildtype	 activity	 between	 the	 three	 motif-
mutant	 shuffled	versions	across	developmental	 (left)	 and	housekeeping	 (right)	enhancers.
The	PCC	 is	 denoted	 for	 each	 comparison.	D)	 Activity	 (log2)	of	wildtype	 and	motif-mutant
developmental	(left)	and	housekeeping	(right)	enhancers	that	were	used	to	derive	the	log2
fold-changes	from	Fig	2C.	Number	of	enhancers	mutated	for	each	motif	type	are	shown.	The
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box	 plots	 mark	 the	 median,	 upper	 and	 lower	 quartiles	 and	 1.5× interquartile	 range	
(whiskers);	outliers	are	shown	individually.	

	
Supplementary	 Figure	 10.	 DeepSTARR	 predicts	 enhancer	 activity	 of	 wildtype	
sequences	in	oligo	UMI-STARR-seq.	

Scatter	plots	of	predicted	vs.	observed	developmental	(A)	and	housekeeping	(B)	enhancer	
activity	signal	across	wildtype	sequences	from	the	test	set	chromosome	tested	as	individual	
oligos	in	oligo	UMI-STARR-seq.	The	PCC	is	denoted	for	each	comparison.	Since	DeepSTARR	
was	 trained	 and	 evaluated	 on	 UMI-STARR-seq	 data	 from	 the	 genome-wide	 screens	 using	
randomly	 sheared	 size-selected	 fragments	 (Fig	 S1),	 this	 result	 serves	 as	 baseline	 for	 the	
performance	of	DeepSTARR	for	the	mutated	oligos	in	oligo	UMI-STARR-seq.	

Supplementary	 Figure	11.	Motif	 importance	 in	native	 sequences	 compared	with	
motif	enrichment.	

	
Scatter	plots	comparing	motif	enrichment	(log2	odds	ratio,	Fig	S7F;	x-axis)	with	the	results	
from	 experimental	 motif	 mutagenesis	 (median	 log2	 fold-change	 values,	 Fig	 2C;	 y-axis)	 in	
native	developmental	(A)	and	housekeeping	(B)	enhancers.	Although	motif	enrichment	is	a	
good	predictor	of	average	motif	importance,	motifs	similarly	enriched	can	have	very	different	
(e.g.	STAT,	CREB,	ETS	and	SREBP)	or	even	opposite	(SREBP	vs	Trl)	importance	values	(see	
panel	A).	
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S10 - DeepSTARR predicts enhancer activity of wildtype 
sequences in oligo UMI-STARR-seq
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Supplementary	Figure	12.	Instances	of	the	same	TF	motif	do	not	have	equivalent	
contribution	to	enhancer	activity.	

A) DeepSTARR	 predicts	 that	 instances	 of	 the	 same	 TF	 motif	 do	 not	 have	 equivalent
contribution.	Density	distributions	of	the	DeepSTARR	predicted	contribution	scores	(average
over	 all	 its	 nucleotides)	 of	 GATA	 (blue)	 or	 GGGCT	 (as	 control;	 grey)	 instances	 in
developmental	 enhancers.	 B)	 Systematic	 mutagenesis	 of	 individual	 TF	 motif	 instances
validates	motif	non-equivalency.	Density	distributions	of	 the	experimentally	derived	(oligo
UMI-STARR-seq)	log2	FC	in	enhancer	activity	after	mutation	of	GATA	(blue)	or	control	(grey)
individual	 instances	 in	developmental	enhancers.	C)	DeepSTARR	predicts	that	 instances	of
the	same	TF	motif	are	not	equivalent.	Distributions	of	the	DeepSTARR	predicted	contribution
scores	 (average	 over	 all	 its	 nucleotides)	 of	 instances	 of	 different	 TF	 motif	 types	 across
developmental	 enhancers	 (red),	 housekeeping	 enhancers	 (blue)	 and	 negative	 genomic
regions	(grey).	Number	of	instances	for	each	motif	type	are	shown.	The	box	plots	mark	the
median,	 upper	 and	 lower	 quartiles	 and	 1.5× interquartile	 range	 (whiskers).	 D)	 Motif
mutagenesis	 validates	motif	 non-equivalency.	 Distributions	 of	 the	 experimentally	 derived
(oligo	UMI-STARR-seq)	log2	FC	in	enhancer	activity	after	mutation	of	individual	instances	of
different	TF	motif	types	or	control	motifs	in	developmental	or	housekeeping	enhancers.	Note
that	the	core	sequence	of	different	instances	of	the	same	motif	type	are	identical,	despite	the
different	log2	FC.	Number	of	instances	for	each	motif	type	are	shown.	The	two-sided	Fligner-
Killeen	test	of	homogeneity	of	variances	was	used	to	compare	the	distributions	of	each	TF
motif	type	with	the	one	from	control	motifs:	AP-1,	P	=	1.2e-07;	GATA,	P	=	2.8e-09;	twis,	P	=
6.4e-09;	Trl,	P	=	0.04;	Dref,	P	=	1.4e-15.	Box	plots	as	in	(C).
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Supplementary	Figure	13.	Prediction	of	motif	contribution	by	PWM	scores,	motif	
syntax	features,	gkm-SVM	and	DeepSTARR.	

A) Bar-plots	with	the	PCC	between	observed	and	predicted	motif	mutation	effects	(log2	FC)
by	PWM	scores,	a	linear	model	with	motif	syntax	features,	and	the	gkm-SVM	and	DeepSTARR
models.	 B-F)	 Distribution	 of	 experimentally	 measured	 fold-change	 (log2	 FC)	 enhancer
activity	after	mutating	individual	motif	instances	of	the	GATA	(B),	AP-1	(C),	twist	(D),	Trl	(E)
and	Dref	(F)	motifs	(violin	plots),	compared	with	the	respective	TF	motif	PWM	scores	and	the
log2	FC	predicted	by	the	models	above.	The	PCC	from	10-fold	cross-validation	is	denoted	for
each	 comparison.	 The	 box	 plots	 mark	 the	 median,	 upper	 and	 lower	 quartiles	 and
1.5× interquartile	range	(whiskers).

S13 - Prediction of motif contribution by PWM scores, 
motif syntax features, gkm-SVM and DeepSTARR
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Supplementary	 Figure	 14.	 Flanking	 nucleotides	 of	 important	 motif	 instances	
contribute	to	enhancer	activity.	

DeepSTARR	predicted	 importance	 for	+/-	50	 flanking	nucleotides	of	 top	90th	 (purple)	and	
bottom	10th	(green)	percentile	motif	instances	selected	based	on	DeepSTARR	scores	for	core	
motif	sequence	(A)	or	 its	 importance	assessed	by	mutagenesis	(B).	*	marks	positions	with	
significant	differences	(two-sided	Wilcoxon	rank-sum	test	p-value	<	0.001).	(A)	GATA,	n	=	992	
independent	instances	per	box;	AP-1,	n	=	227;	twist,	n	=	137;	Trl,	n	=	680;	Dref,	n	=	415.	(B)	
GATA,	n	=	102;	AP-1,	n	=	28;	twist,	n	=	14;	Trl,	n	=	70;	Dref,	n	=	102.	The	box	plots	mark	the	
median,	 upper	 and	 lower	 quartiles	 and	 1.5× interquartile	 range	 (whiskers),	 and	 the	 lines	
connect	the	respective	medians.	The	importance	(imp)	of	the	core	and	upstream/downstream	
flanking	 sequences	 corresponds	 to	 the	 sum	 of	 delta	 between	medians	 of	 top	 and	 bottom	
instances	for	the	positions	with	significant	differences.	
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Supplementary	Figure	15.	Contribution	of	TF	motifs	depend	on	their	flanks.	

Motif	 contribution	 correlates	with	 flanking	 base-pairs.	 Heatmaps:	 Flanking	 nucleotides	 of	
instances	of	different	TF	motif	types	across	developmental	(GATA:	GATAA	(A),	AP-1:	TGA.TCA	
(B),	 Trl:	 GAGAG	 (C),	 twist:	 CATCTG	 (D))	 or	 housekeeping	 (Dref:	 ATCGAT	 (E))	 enhancers	
sorted	by	their	DeepSTARR	predicted	contribution	(left)	or	the	experimentally	derived	(oligo	
UMI-STARR-seq)	log2	fold-change	in	enhancer	activity	after	mutation	(right;	minus	log2	fold-
change,	-log2	FC).	Box	plots:	Importance	of	motif	instances	according	to	the	different	bases	at	
each	 flanking	 position.	 *	 marks	 positions	 with	 significant	 differences	 between	 the	 four	
nucleotides	(FDR-corrected	Welch	One-Way	ANOVA	test	p-value	<	0.01).	The	box	plots	mark	
the	median,	upper	and	 lower	quartiles	and	1.5× interquartile	range	(whiskers).	Number	of	
instances	for	each	motif	type	are	shown.	Top:	logos	of	the	top	90th	percentile	motif	instances	
for	each	sorting	method.	
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Supplementary	Figure	16.	GATA	flanking	nucleotides	are	sufficient	to	switch	motif	
contribution.	

47	developmental	enhancers	containing	both	one	strong	(purple)	and	one	weak	(green)	GATA	
instance	(≥	2-fold	difference	between	 instances)	were	selected.	B)	Observed	(UMI-STARR-
seq,	 top)	 and	 predicted	 (DeepSTARR,	 bottom)	 log2	 FC	 enhancer	 activity	 to	 wildtype	 for	
sequences	where	the	2	or	5	bp	flanks	of	strong	instances	were	replaced	by	the	ones	of	weak	
instances	(purple)	and	vice	versa	(green)	(cartoon	in	(A)).	D)	Observed	(UMI-STARR-seq,	top)	
and	predicted	(DeepSTARR,	bottom)	log2	FC	enhancer	activity	to	wildtype	of	mutating	the	
strong	instance	(purple)	compared	to	mutating	this	instance	and	additionally	replacing	the	2	
or	5	bp	flanks	of	the	weak	instance	by	the	flanks	of	the	strong	instance	(light	purple)	(cartoon	
in	(C)).	The	same	for	the	log2	FC	of	mutating	the	weak	instance	(green)	compared	to	mutating	
this	instance	and	additionally	replacing	the	2	or	5	bp	flanks	of	the	strong	instance	by	the	flanks	
of	the	weak	instance	(light	green)	(cartoon	in	(C)).	****	p-value	<	0.0001,	***	<	0.001,	**	<	0.01,	
* <	0.05,	n.s.	non-significant	(two-sided	Wilcoxon	signed	rank	test).	The	box	plots	mark	the
median,	upper	and	lower	quartiles	and	1.5× interquartile	range	(whiskers).
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Supplementary	 Figure	 17.	 Motif	 importance	 in	 function	 of	 relative	 position	 in	
Drosophila	enhancers.	

DeepSTARR	predicted	(A)	 and	experimentally	measured	(B)	 log2	 fold-change	 in	enhancer	
activity	after	mutation	of	motifs	at	different	positions	relative	to	the	enhancer	center.	The	box	
plots	mark	the	median,	upper	and	lower	quartiles	and	1.5× interquartile	range	(whiskers).	(A,	
B) GATA,	 n	 =	 171/225/275/186/165	 independent	 instances	 per	 box;	 AP-1,	 n	 =
35/57/108/42/36;	 twist,	 n	 =	 41/49/74/60/43;	 Trl,	 n	 =	 143/162/155/135/97;	 Dref,	 n	 =
75/211/509/178/45.
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Supplementary	Figure	18.	Interpretation	of	DeepSTARR	reveals	TF	motif	distance	
preferences.	

A) In	silico	 characterization	of	TF	motif	distance	preferences.	MotifA	was	embedded	 in	the
center	of	60	synthetic	random	DNA	sequences	and	MotifB	at	a	range	of	distances	from	MotifA,
both	 up-	 and	 downstream.	 Both	 the	 average	 developmental	 and	 housekeeping	 enhancer
activity	 is	 predicted	 by	 DeepSTARR.	 The	 cooperativity	 (residuals	 fold-change)	 between
MotifA	and	MotifB	as	a	function	of	distance	is	quantified	as	the	activity	of	MotifA+B	divided	by
the	sum	of	 the	marginal	effects	of	MotifA	 and	MotifB	(MotifA	+	MotifB	–	backbone	 (b)).	B)
Heatmaps	showing	the	pairwise	cooperativity	(residuals)	between	different	TF	motif	types	in
developmental	(left)	or	housekeeping	(right)	enhancers.	C-D)	Cooperativity	between	motif
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pairs	at	different	distances	in	(C)	developmental	and	(D)	housekeeping	enhancers.	Points	and	
smooth	 lines	 show	 the	median	 cooperativity	 across	 all	 60	 backbones	 for	 each	motif	 pair	
distance	up-	and	downstream.	The	MotifA	in	the	center	is	mentioned	in	each	plot’s	title	and	
tested	with	 all	MotifB	motifs	 (different	 colours).	 GGGCT	motif	was	 used	 as	 control	 (grey).	
Dashed	line	at	1	represents	no	interaction.	

Supplementary	 Figure	 19.	 Motifs	 are	 not	 often	 at	 optimal	 distances	 in	
developmental	enhancers,	but	enhancer	activity	follows	optimal	spacing	rules.	
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A) Occurrence	of	motif	pairs	at	different	distances	in	genomic	enhancers.	Heatmaps	showing
the	enrichment	(Fisher’s	odds	ratio)	of	motif	pairs	at	different	distance	bins	in	developmental
(left)	or	housekeeping	(right)	enhancers.	*	represents	significant	enrichment	or	depletions
(two-sided	Fisher’s	exact	test	FDR-corrected	p-value	<	0.05).	B)	Validation	of	optimal	spacing
rules	for	enhancer	activity.	Heatmaps	showing	the	association	between	enhancer	activity	and
the	presence	of	motif	pairs	at	different	distance	bins	in	developmental	(left)	or	housekeeping
(right)	enhancers	using	a	multiple	linear	regression.	The	multiple	linear	regression	included,
as	 independent	 variables,	 the	 number	 of	 instances	 for	 the	 different	 developmental	 or
housekeeping	TF	motif	types.	Linear	model	coefficients	are	shown	and	*	represents	significant
positive	or	negative	associations	(linear	regression	FDR-corrected	p-value	<	0.05).	C-D)	Top:
Same	 as	 in	 Fig	 S8C,D	 (but	 with	 up-	 and	 downstream	 distances	 combined)	 per	 (C)
developmental	 or	 (D)	 housekeeping	 motif	 pair.	 Middle:	 Association	 between	 enhancer
activity	and	the	distance	at	which	the	motif	pair	is	found.	Coefficient	(y-axis)	and	p-value	from
a	multiple	linear	regression	including,	as	independent	variables,	the	number	of	instances	for
the	different	developmental	or	housekeeping	TF	motif	 types.	Bottom:	Odds	ratio	(log2)	by
which	 the	 two	motifs	 are	 found	within	 a	 specified	 distance	 from	each	 other	 in	 enhancers
compared	with	negative	genomic	regions.	Color	legend	is	shown.	Example	motif	pairs	where
optimal	spacing	preferences	are	concordant	or	discordant	with	their	occurrence	in	enhancers
are	shown.	*	FDR-corrected	two-sided	Fisher's	Exact	test	p-value	<	0.05.
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Supplementary	 Figure	 20.	 Systematic	 TF	 motif	 mutagenesis	 in	 human	 HCT116	
enhancers.	

A) Systematic	TF	motif	mutagenesis	in	human	HCT116	enhancers.	We	selected	1,083	strong
human	 enhancers	 and	 9	 TF	 motif	 types	 and	 mutated	 all	 instances	 of	 the	 same	 motif
simultaneously	 or	 each	 instance	 individually.	 The	 activity	 of	 the	 wildtype	 and	 mutant
sequences	were	measured	through	UMI-STARR-seq.	B)	Pairwise	comparisons	of	 input	and
STARR-seq	signal	between	two	independent	biological	replicates	across	all	oligos	included	in
the	 human	 oligo	 library.	 Axes	 are	 in	 logarithmic	 scale.	 The	 PCC	 is	 denoted	 for	 each
comparison.	C)	 Identification	 of	 1,083	 active	 short	 human	 enhancers.	Distribution	 of	 log2
enhancer	 activity	 for	 oligos	 selected	 from	 negative	 regions	 (grey)	 or	 enhancer	 sequences
(blue).	1,083	active	short	human	enhancers	(log2	wildtype	activity	in	oligo	UMI-STARR-seq
>=	 2.03,	 the	 strongest	 negative	 region,	 red	 dashed	 line;	 see	 Methods)	 were	 selected	 for
subsequent	 motif	 mutation	 analyses.	 The	 box	 plots	 mark	 the	 median,	 upper	 and	 lower
quartiles	 and	 1.5× interquartile	 range	 (whiskers).	 D)	 TF	 motif	 requirements	 of	 human
HCT116	 enhancers.	 Log2	 FC	 enhancer	 activity	 for	 hundreds	 of	 human	 enhancers	 after
mutating	all	instances	of	four	control	(grey)	and	nine	candidate	human	TF	motifs.	Number	of
enhancers	mutated	for	each	motif	type	and	respective	motif	PWM	logos	are	shown.	Box	plots
as	in	(C);	but	outliers	are	shown	individually.	E)	Activity	(log2)	of	wildtype	and	motif-mutant
enhancer	sequences	that	were	used	to	derived	the	log2	fold-changes	from	Fig	S10D.	Number
of	enhancers	mutated	is	shown.	Box	plots	as	in	(C);	but	outliers	are	shown	individually.	F)
Motif	requirements	are	independent	of	motif	mutant	variants.	Left:	Distribution	of	enhancer
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activity	 for	wildtype	or	motif-mutant	 enhancer	 sequences	 for	 the	different	TF	motifs.	 The	
activity	of	sequences	where	the	motifs	were	mutated	to	different	motif	shuffled	versions	is	
shown.	Number	of	enhancers	mutated	for	each	motif	type	are	shown.	Box	plots	as	in	(C);	but	
outliers	are	shown	individually.	Right:	Pairwise	comparisons	of	log2	FC	to	wildtype	activity	
between	the	three	motif-mutant	shuffled	versions	across	all	enhancers.	The	PCC	is	denoted	
for	each	comparison.	
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Supplementary	 Figure	 21.	 Motif	 syntax	 rules	 dictate	 the	 contribution	 of	 motif	
instances.	

A) TF	motif	non-equivalence	is	widespread	in	human	enhancers.	Distributions	of	the	log2	FC
in	 enhancer	 activity	 after	 mutation	 of	 individual	 instances	 of	 different	 TF	motif	 types	 or
control	motifs.	Number	of	 instances	for	each	motif	type	are	shown.	The	two-sided	Fligner-
Killeen	test	of	homogeneity	of	variances	was	used	to	compare	the	distributions	of	each	TF
motif	type	with	the	one	from	control	motifs:	AP-1,	P	=	7.5e-27;	P53,	P	=	1.96e-41;	MAF,	P	=
3.1e-33;	 CREB1,	P	 =	 7.8e-21;	ETS,	P	 =	 7.8e-15;	AP-1,	P	 =	 1.1e-10.	The	box	plots	mark	 the
median,	upper	and	lower	quartiles	and	1.5× interquartile	range	(whiskers).	B)	Motif	syntax
rules	dictate	the	contribution	of	TF	motif	instances	in	human	enhancers.	For	each	TF	motif
type	 (rows),	 we	 built	 a	 linear	 model	 containing	 the	 number	 of	 instances,	 the	 motif	 core
(defined	as	the	nucleotides	included	in	each	TF	motif	PWM	model)	and	flanking	nucleotides
(5	bp	on	each	side),	the	motif	position	relative	to	the	enhancer	center,	and	the	distance	to	all
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other	TF	motifs	(close:	<	25	bp;	intermediate:	≥	25	bp	and	≤	50	bp;	distal:	>50	bp)	to	predict	
the	 contribution	 of	 its	 individual	 instances	 (mutation	 log2	 FC,	 from	 Fig	 S11A)	 across	 all	
enhancers.	Heatmap	shows	the	contribution	of	each	feature	(columns)	for	each	model,	colored	
by	the	direction	(positive:	red,	negative:	blue)	and	linear	regression	p-value.	The	PCC	between	
predicted	and	observed	motif	contribution	(using	10-fold	cross-validation)	is	shown	with	the	
green	 color	 scale.	 C)	 Scatter	 plots	 comparing	 the	 measured	 contribution	 of	 individual	
instances	of	each	TF	motif	 type	(log2	FC	 in	enhancer	activity	after	mutation)	with	 the	one	
predicted	by	the	models	from	(B).	The	PCC	is	denoted	for	each	comparison.	D)	Models	taking	
into	the	motif	syntax	features	predict	better	the	contribution	of	motif	instances	than	solely	
the	PWM	scores.	Bar-plots	comparing	the	PCC	from	the	full	models	(from	(B);	green)	and	the	
same	 just	using	 existing	PWM	scores	 (orange),	 assessed	using	10-fold	 cross-validation.	E)	
Variance	explained	by	each	motif	syntax	feature	in	the	linear	models	built	for	each	TF	motif.	
Average	across	TF	models	is	shown	on	the	right.	

	
	
Supplementary	 Figure	 22.	 Motif	 importance	 in	 function	 of	 relative	 position	 in
human	enhancers.	

Experimentally	measured	 log2	 fold-change	 in	enhancer	activity	after	mutation	of	motifs	at	
different	positions	relative	to	the	enhancer	center.	The	box	plots	mark	the	median,	upper	and	
lower	quartiles	 and	1.5× interquartile	 range	 (whiskers).	 AP-1,	 n	 =	127/204/928/230/109	
independent	 instances	per	 box;	 P53,	 n	 =	 34/47/138/54/29;	MAF,	 n	 =	 44/45/257/61/44;	
CREB1,	 n	 =	 40/60/70/55/32;	 ETS,	 n	 =	 146/202/342/206/173;	 EGR1,	 n	 =	
88/128/103/124/70.	

S22 - Motif importance in function of relative position in 
human HCT116 enhancers
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Supplementary	Figure	23.	Comparison	of	motif	syntax	features	between	Drosophila	
and	human	AP-1.	

A-B)	For	each	Drosophila	(A)	and	human	((B);	see	also	Fig	6E)	TF	motif	type	(rows),	we	built
a	linear	model	containing	the	number	of	instances,	the	motif	core	and	flanking	nucleotides,
the	motif	position	relative	to	the	enhancer	center,	and	the	distance	to	all	other	TF	motifs	to
predict	 the	 contribution	 of	 its	 individual	 instances	 (mutation	 log2	 fold-change)	 across	 all
enhancers.	The	PCC	between	predicted	and	observed	motif	contribution	(using	10-fold	cross-
validation)	is	shown	with	the	green	color	scale	on	the	left.	Heatmap	shows	the	contribution	of
each	feature	(columns)	for	each	model,	colored	by	the	linear	regression	p-value	(red	scale).
Grey	denotes	features	not	included	in	the	respective	models.	C)	Comparison	of	motif	syntax
features	 between	Drosophila	 and	 human	 AP-1	 models.	 Grey	 denotes	 features	 not	 shared
between	the	respective	models.	D)	DeepSTARR	predicts	the	contribution	of	AP-1	instances	in
human	 enhancers.	 Distribution	 of	 experimentally	 measured	 log2	 fold-change	 (log2	 FC)
enhancer	 activity	 after	mutating	 1,617	different	AP-1	 instances	 across	HCT116	 enhancers
(left),	compared	with	the	log2	FC	predicted	by	DeepSTARR	(right).	The	PCC	is	denoted.	The
box	 plot	 marks	 the	 median,	 upper	 and	 lower	 quartiles	 and	 1.5× interquartile	 range
(whiskers).
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Supplementary	Figure	24.	Prediction	of	synthetic	sequences’	activity	by	different	
methods.	

Comparison	 between	 experimentally	measured	 enhancer	 activity	 (log2)	 for	 249	 synthetic	
sequences	binned	according	to	predicted	activities	by	DeepSTARR,	gkm-SVM	and	TF	motifs	
Lasso	 models.	 The	 box	 plots	 mark	 the	 median,	 upper	 and	 lower	 quartiles	 and	 1.5×	
interquartile	range	(whiskers)	

S24 - Prediction of synthetic sequences’ activity by 
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Supplementary	 Figure	 25.	 Synthetic	 enhancers	 function	 independent	 of	 their	
orientation	and	position.	

A) Candidate	sequences	were	cloned	in	both	orientations	upstream	(red)	and	downstream
(green)	 of	 the	minimal	 DSCP	 promoter	 and	 their	 enhancer	 activity	 assessed	 in	 luciferase
assays.	 Bar	 plots	 show	 the	 average	 luciferase	 signal	 per	 sequence	 and	 construct	 across
replicates	 (fold-change	over	 the	average	signal	of	 the	 five	negative	control	 sequences)	+/-
standard	 deviation.	 N=8	 biologically	 independent	 samples.	 B)	 DeepSTARR	 derived
developmental	nucleotide	contribution	scores	for	the	native	and	synthetic	enhancers	tested
by	luciferase.
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Supplementary	Figure	26.	In	vivo	spatiotemporal	activity	of	S2	enhancers.	

Bar	plots	show	the	enrichment	(log2	Fisher’s	odds	ratio)	of	 the	S2	developmental	(A)	and	
housekeeping	(B)	enhancer-overlapping	tiles	in	different	Drosophila	embryonic	stages	(top)	
and	tissues	(bottom,	only	top	25	shown)	(data	from	ref.5).	For	each	bar,	the	number	of	active	
tiles	and	respective	percentage	of	total	enhancers	is	shown.	Developmental	enhancers	(A)	
are	enriched	in	embryonic	enhancers	active	in	hemocytes	but	also	in	other	mesoderm-
derived	 tissues,	 such	 as	 fat	 body,	 crystal	 cells,	 plasmatocytes	 and	 macrophages.	 In	
contrast,	housekeeping	enhancers	(B)	are	enriched	in	regions	ubiquitously	active	in	the	
embryo.	
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31	

Supplementary	Figure	27.	DeepSTARR	discriminates	motifs	within	enhancers	from	
those	 outside	 enhancers	 among	 all	 instances	 selected	 to	 have	 favorable	 syntax	
context.	

The	Drosophila	linear	models	based	on	motif	syntax	features	(from	Fig	S13,	S23A)	were	used	
to	select	instances	of	each	TF	motif	in	the	test	chromosome	with	a	favorable	syntax	context:	
motif	number,	 flanks,	position	and	inter-motif	distances	(see	Methods).	This	approach	still	
overpredicts	 instances	 that	 are	 not	 in	 enhancers	 (numbers	 in	 black	 shown	 for	 each	motif	
type).	From	these,	DeepSTARR	correctly	predicts	sites	within	enhancers:	bar-plots	with	the	
area	 under	 precision-recall	 (PR)	 curve	 compared	 with	 the	 expected	 by	 a	 random	model;	
number	of	instances	predicted	by	DeepSTARR	to	be	in	enhancers	in	red.	
	
Supplementary	Figure	28.	Comparison	of	DeepSTARR	and	STARR-seq	with	native	
chromatin	and	enhancer	features.	

Hierarchical	 clustering	 of	 DeepSTARR,	 STARR-seq	 and	 native	 chromatin	 and	 enhancer	
features	 on	 the	 basis	 of	 Pearson’s	 correlation	 (PCC)	 of	 normalized	 read	 coverage	 over	 a	
merged	set	of	all	(1	kb)	peaks.	Developmental	and	housekeeping	DeepSTARR	and	STARR-seq	
are	 colored.	 DeepSTARR	 models	 STARR-seq	 very	 precisely	 and	 both	 correlate	 only	
moderately	with	DNA	accessibility	(DHS;	PCC	dev:	0.21	and	hk:	0.26),	H3K27ac	(PCC	dev:	0.25	
and	hk:	0.33),	H3k4me1	(PCC	dev:	0.11	and	hk:	-0.21)	and	nascent	RNA	expression	(PRO-cap;	
PCC	dev:	0.15	and	hk:	0.29).	

S27 - DeepSTARR discriminates motifs within enhancers from those 
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Supplementary	Tables	

Supplementary	 Table	 1.	 Primers	 used	 for	 UMI-STARR-seq	 library	 cloning	 and	
luciferase	assay.	

Supplementary	 Table	 2.	 Genome-wide	 and	 oligo	 UMI-STARR-seq	 mapping	
statistics.	
Summary	of	total	sequenced	reads,	mapped	reads	and	unique	fragments	(after	collapsing	
by	UMIs)	 for	 two	developmental	and	 two	housekeeping	genome-wide	UMI-STARR-seq	
screens	in	S2	cells,	three	developmental	and	three	housekeeping	oligo	UMI-STARR-seq	
screens	 in	 S2	 cells,	 and	 three	 oligo	 UMI-STARR-seq	 screens	 in	 human	 HCT-116	 cells.	
Counts	mapping	to	the	dm3	genome	or	oligo	libraries	are	reported.	The	lower	mapping	
rate	 for	the	Drosophila	oligo	 libraries	 is	because	the	 library	contained	other	oligos	not	
used	in	this	work.	

Supplementary	 Table	 3.	 11,658	 developmental	 and	 7,062	 housekeeping	
Drosophila	S2	enhancers.	
P-value	from	hypergeometric	test.

Supplementary	 Table	 4.	 Motif	 enrichment	 of	 developmental	 and	 housekeeping	
Drosophila	S2	enhancer	sequences.	
Nominal	and	FDR-corrected	p-values	from	two-sided	Fisher’s	exact	test.	

Supplementary	 Table	 5.	 Library	 of	Drosophila	 S2	 enhancers,	 motif-mutant,	 and	
motif	flank	swapping	sequences.	
Table	of	all	23,959	Drosophila	melanogaster	enhancer	sequences	and	their	motif-mutant	
sequences	 included	 in	 the	 oligo	 library,	 with	 genomic	 coordinates,	 oligo	 sequence,	
experiment,	mutated	motif,	 read	 counts	 for	 each	 screen	 and	 final	 developmental	 and	
housekeeping	enhancer	activity	(log2).	

Supplementary	Table	6.	Mutation	of	all	motif	instances	in	Drosophila	S2	enhancers.	
Table	with	 all	 oligos	 used	 in	 the	 analysis	 of	motif	 requirements	 (oligos	with	 all	motif	
instances	mutated)	with	their	DNA	sequence,	enhancer	type,	motif	type	mutated,	motif	
mutant	 version,	 activity	 of	 mutant	 and	 wildtype	 sequences	 and	 respective	 log2	 fold-
change.	

Supplementary	 Table	 7.	 Comparison	 of	 DeepSTARR	 predicted	motif	 importance	
and	motif	enrichment.	
Data	used	in	Fig.	2D.	

Supplementary	Table	8.	Mutation	of	 individual	motif	 instances	 in	Drosophila	 S2	
enhancers.	
Table	with	all	oligos	used	in	the	analysis	of	mutations	of	individual	motif	instances	with	
their	 DNA	 sequence,	 enhancer	 type,	 motif	 type	 mutated,	 experimentally	 measured	
activity	of	mutant	and	wildtype	oligos	and	 respective	 log2	 fold-change,	 coordinates	of	
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motif	instance	in	enhancer	oligo,	sequence	of	wildtype	and	mutant	motif	instance,	PWM	
scores	and	DeepSTARR	developmental	and	housekeeping	predicted	log2	fold-change.	

Supplementary	 Table	 9.	 DeepSTARR-predicted	 contribution	 of	 activator	 motif	
instances	in	Drosophila	S2	enhancers.	
Data	used	in	Fig	S12A,C,	S14	and	S15.	Motif	instances	mapped	by	string-matching.	

Supplementary	Table	10.	PWM	models	used	for	the	selected	Drosophila	TF	motifs.	
PWM	logos	shown	in	Fig	4C	and	used	in	Fig	3D,	5B,	S13,	S19.	

Supplementary	Table	11.	Swapping	of	GATA	motif	flanks.	
Data	used	in	Fig	4D	and	S16.	

Supplementary	Table	12.	PWM	models	used	for	the	selected	human	TF	motifs.	
TF	motif	PWM	models	were	retrieved	from	Vierstra	et	al.,	2020.	PWM	logos	are	shown	in	
Fig	S20D.	

Supplementary	Table	13.	Library	of	human	HCT-116	enhancers	and	motif-mutant	
sequences.	
Table	 of	 all	 22,900	 human	 enhancer	 sequences	 and	 their	 motif-mutant	 sequences	
included	 in	 the	 oligo	 library,	 with	 genomic	 coordinates,	 oligo	 sequence,	 experiment,	
mutated	motif,	read	counts	for	each	screen	and	final	enhancer	activity	(log2).	

Supplementary	 Table	 14.	 Mutation	 of	 all	 motif	 instances	 in	 human	 HCT-116	
enhancers.	
Table	with	 all	 oligos	 used	 in	 the	 analysis	 of	motif	 requirements	 (oligos	with	 all	motif	
instances	mutated)	with	their	DNA	sequence,	motif	type	mutated,	motif	mutant	version,	
activity	of	mutant	and	wildtype	sequences	and	respective	log2	fold-change.	Data	used	in	
Fig	S20D-F.	

Supplementary	Table	15.	Mutation	of	individual	motif	instances	in	human	HCT-116	
enhancers.	
Table	with	all	oligos	used	in	the	analysis	of	mutations	of	individual	motif	instances	with	
their	DNA	sequence,	motif	type	mutated,	experimentally	measured	activity	of	mutant	and	
wildtype	 oligos	 and	 respective	 log2	 fold-change,	 coordinates	 of	 motif	 instance	 in	
enhancer	oligo,	sequence	of	wildtype	and	mutant	motif	instance,	and	PWM	scores.	Data	
used	in	Fig	6	and	S21.	

Supplementary	Table	16.	DeepSTARR	predicted	contribution	of	AP-1	instances	in	
human	HCT-116	enhancers.	
Data	used	in	Fig	S23.	

Supplementary	 Table	 17.	 Experimentally	 measured	 and	 DeepSTARR	 predicted	
activity	of	249	synthetic	enhancers	in	Drosophila	S2	cells.	
Data	used	in	Fig	7.	

Supplementary	Table	18.	Luciferase	assay	sequences	and	results.	
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Sequences	selected	for	validation	in	luciferase	assay	with	raw	and	normalized	luciferase	
signals	(eight	replicates	each	divided	in	two	different	plates).	
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Supplementary	Methods	

UMI-STARR-seq	

Cell	culture		

Drosophila	S2	cells	

Schneider	 2	 cells	 were	 grown	 in	 Schneider’s	 Drosophila	Medium	 (Gibco;	 21720-024)	

supplemented	 with	 10%	 heat	 inactivated	 FBS	 (Sigma;	 F7524)	 at	 27ºC.	 Cells	 were	

passaged	every	2-3	days.		

Human	HCT116	cells	

Human	HCT116	 cells	were	 cultured	 in	DMEM	(Gibco;	52100-047)	 supplemented	with	

10%	heat	inactivated	FBS	(Sigma;	F7524)	and	2mM	L-Glutamine	(Sigma;	G7513)	at	37ºC	

in	a	5%	C02-enriched	atmosphere.	Cells	were	passaged	every	2-3	days.	

Electroporation	

The	MaxCyte-STX	system	was	used	for	all	electroporations.	S2	cells	were	electroporated	

at	 a	 density	 of	 50	 x	 107	 cells	 per	 100µL	 and	 5µg	 of	 DNA	 using	 the	 “Optimization	 1”	

protocol.	HCT116	cells	were	electroporated	at	a	density	of	1	x	107	cells	per	100µL	and	

20µg	of	DNA	using	the	preset	“HCT116”	program.		

UMI-STARR-seq	experiments	

Library	cloning	

Drosophila	 genome-wide	 libraries	were	generated	by	 shearing	genomic	DNA	 from	 the	

sequenced	D.mel	strain	(y;	cn	bw	sp)	to	an	average	of	200	bp	fragments,	decided	to	match	

the	 length	 of	 the	 oligonucleotide	 libraries	 (below)	 and	 increase	 the	 resolution	 of	 the	

enhancer	sequences.	Inserts	were	cloned	into	the	standard	Drosophila	STARR-seq	vector1	

containing	either	the	DSCP	or	Rps12	core-promoters,	and	libraries	grown	in	6l	of	LB-Amp.	

Drosophila	and	human	oligo	libraries	were	synthesized	by	Twist	Bioscience	including	249	

bp	enhancer	sequence	and	adaptors	for	library	cloning.	Fragments	from	the	Drosophila	

library	were	amplified	(primers	see	Supplementary	Table	1)	and	cloned	into	Drosophila	

STARR-seq	vectors	 containing	either	 the	DSCP	or	Rps12	core-promoters	using	Gibson	

cloning	(New	England	BioLabs;	E2611S).	The	oligo	library	for	human	STARR-seq	screens	

was	amplified	(primers	see	Supplementary	Table	1)	and	cloned	into	the	human	STARR-

seq	plasmid	with	the	ORI	in	place	of	the	core	promoter2.	Libraries	were	grown	in	2l	LB-

Amp.		
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All	libraries	were	purified	with	Qiagen	Plasmid	Plus	Giga	Kit	(cat.	no.	12991).	

Drosophila	S2	cells	

UMI-STARR-seq	was	performed	as	described	previously1,3.	In	brief,	the	screening	libraries	

were	generated	from	genomic	DNA	isolated	of	the	sequenced	D.mel	strain	(y;	cn	bw	sp)	

or	synthesized	as	oligo	pools	by	Twist	Bioscience	(see	above).	We	transfected	400	×	10^6	

S2	 cells	 total	 per	 replicate	 with	 20	 μg	 of	 the	 input	 library	 using	 the	 MaxCyte	

electroporation	system.	After	24	hr	incubation,	poly-A	RNA	was	isolated	and	processed	

as	described	before3.	Briefly:	after	reverse	transcription	and	second	strand	synthesis	a	

unique	molecular	identifier	(UMI)	was	added	to	each	transcript,	allowing	the	counting	of	

individual	RNA	molecules.	This	is	followed	by	two	nested	PCR	steps,	each	with	primers	

that	 are	 specific	 to	 the	 reporter	 transcripts	 such	 that	 STARR-seq	 does	 not	 detect	

endogenous	cellular	RNAs.	

Human	HCT116	cells	

STARR-seq	was	performed	as	described	previously1–3.	Screening	libraries	were	generated	

from	synthesized	oligo	pools	by	Twist	Bioscience	(see	above).	We	transfected	80	×	10^6	

HCT116	 cells	 total	 per	 replicate	 with	 160	 µg	 of	 the	 input	 library	 using	 the	 MaxCyte	

electroporation	 system.	 After	 6	 hr	 incubation,	 poly-A	 RNA	 was	 isolated	 and	 further	

processed	as	described	before3.		

Illumina	sequencing	

Next-generation	sequencing	was	performed	at	the	VBCF	NGS	facility	on	an	Illumina	HiSeq	

2500,	NextSeq	550	or	NovaSeq	SP	platform,	following	manufacturer’s	protocol.	Genome-
wide	UMI-STARR-seq	screens	were	sequenced	as	paired-end	36	cycle	runs	(except	the	

developmental	input	library,	as	paired-end	50	cycle	runs)	and	Twist-oligo	library	screens	

were	sequenced	as	paired-end	150	cycle	runs,	using	standard	Illumina	i5	idexes	as	well	

as	unique	molecular	identifiers	(UMIs)	at	the	i7	index.	Deep	sequencing	base-calling	was	

performed	with	CASAVA	(v.1.9.1).	

Genome-wide	UMI-STARR-seq	data	analysis	

Paired-end	genome-wide	UMI-STARR-seq	RNA	and	DNA	input	reads	(36	bp;	except	the	

developmental	 input	 library	 that	was	 50	 bp)	were	mapped	 to	 the	Drosophila	 genome	

(dm3),	excluding	chromosomes	U,	Uextra,	and	the	mitochondrial	genome,	using	Bowtie	

v.1.2.24.	Mapping	reads	with	up	to	three	mismatches	and	a	maximal	insert	size	of	2	kb

were	kept.	For	paired-end	RNA	reads	that	mapped	to	the	same	positions,	we	collapsed
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those	that	have	identical	UMIs	(10	bp,	allowing	one	mismatch)	to	ensure	the	counting	of	

unique	 reporter	 transcripts	 (Supplementary	 Table	 2).	 We	 further	 computationally	

selected	 both	 RNA	 and	 input	 fragments	 of	 length	 150-250	 bp	 to	 only	 capture	 active	

sequences	derived	from	short	fragments.	After	processing	the	two	biological	replicates	

separately,	we	pooled	both	replicates	for	developmental	and	housekeeping	screens	for	

further	analyses.	

Peak	calling	was	performed	as	described	previously1.	Peaks	that	had	a	hypergeometric	p-

value	 <=	 0.001	 and	 a	 corrected	 enrichment	 over	 input	 (corrected	 to	 the	 conservative	

lower	bound	of	a	95%	confidence	interval)	greater	than	3	were	defined	as	enhancers	and	

resized	to	249	bp	(same	length	as	used	in	oligo	libraries)	(Supplementary	Table	3).	Non-

corrected	enrichment	over	input	was	used	as	enhancer	activity	metric.	Enhancers	were	

classified	 as	 developmental	 or	 housekeeping	 based	 on	 the	 screen	 with	 the	 highest	

activity.	

In	vivo	spatiotemporal	activity	of	developmental	and	housekeeping	enhancers	

Drosophila	~2	kb	genomic	tiles	tested	for	enhancer	activity	in	different	embryonic	stages	

and	 tissues	were	 retrieved	 from	 ref.5	 and	 overlapped	with	 the	 S2	 developmental	 and	

housekeeping	enhancers	 (minimum	overlap	of	200	bp).	1,041	developmental	and	244	

housekeeping	S2	enhancers	were	included	in	the	tiles	tested	of	which	742	(71%)	and	180	

(52%),	respectively,	were	active	in	at	least	one	stage/tissue.	We	assessed	the	enrichment	

of	the	S2	enhancer-overlapping	tiles	in	each	stage	and	tissue	by	two-sided	Fisher’s	exact	

test	 (Fig	 S26).	 Obtained	 P-values	 were	 corrected	 for	 multiple	 testing	 by	 Benjamini-

Hochberg	procedure	and	considered	significant	if	FDR	≤	0.05.	

Oligo	library	UMI-STARR-seq	data	analysis	

Oligo	 library	 UMI-STARR-seq	 RNA	 and	 DNA	 input	 reads	 (paired-end	 150	 bp)	 were	

mapped	to	a	reference	containing	249	bp	long	sequences	containing	both	wildtype	and	

mutated	fragments	from	the	Drosophila	or	human	libraries	using	Bowtie	v.1.2.24.	For	the	

Drosophila	 library	we	demultiplexed	reads	by	 the	 i5	and	 i7	 indexes	and	oligo	 identity.	

Mapping	reads	with	 the	correct	 length,	strand	and	with	no	mismatches	(to	 identify	all	

sequence	variants)	were	kept.	Both	DNA	and	RNA	reads	were	collapsed	by	UMIs	(10	bp)	

as	above	(Supplementary	Table	2).	

We	excluded	oligos	with	less	than	10	reads	in	any	of	the	input	replicates	and	added	one	

read	pseudocount	to	oligos	with	zero	RNA	counts.	The	enhancer	activity	of	each	oligo	in	

each	screen	was	calculated	as	the	log2	fold-change	over	input,	using	all	replicates,	with	

DESeq26.	 We	 used	 the	 counts	 of	 wildtype	 negative	 regions	 in	 each	 library	 as	 scaling	
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factors	between	samples.	This	normalization	only	changes	the	position	of	the	zero	and	

consequently	 does	 not	 affect	 the	 calculation	 of	 log2	 fold-changes	 between	 different	

sequences	or	the	p-values	for	the	statistical	tests	used.	

Deep	Learning	

Data	preparation	

We	selected	all	windows	at	the	summit	of	developmental	and	housekeeping	enhancers,	

in	addition	to	three	windows	on	either	side	of	the	regions	(stride	100	bp).	The	remaining	

part	of	the	genome	was	binned	into	249	bp	windows	with	a	stride	of	100	bp,	excluding	

chromosomes	U,	Uextra,	and	the	mitochondrial	genome.	We	only	included	bins	with	more	

than	five	reads	in	the	input	and	at	least	one	read	in	the	RNA	of	both	developmental	and	

housekeeping	screens.	To	have	a	diversity	of	inactive	sequences,	we	selected	(1)	20,000	

random	bins	overlapping	accessible	regions	in	different	Drosophila	cell	types	(S2,	kc167	

and	OSC1,7)	and	embryogenesis	stages8,	as	well	as	all	bins	overlapping	(2)	enhancers	from	

different	Drosophila	cell	types	(OSC	and	BG39)	and	(3)	inducible	enhancers	in	S2	cells	for	

two	different	stimuli	(ecdysone10	and	Wnt	signaling11).	Lastly,	we	added	59,081	random	

windows	with	a	range	of	enhancer	activity	levels.	We	augmented	our	dataset	by	adding	

the	reverse	complement	of	each	original	sequence,	with	the	same	output,	ending	up	with	

242,026	examples	(484,052	post-augmentation).	Sequences	from	the	first	(40,570;	8.4%)	

and	 second	 half	 of	 chr2R	 (41,186;	 8.5%)	 were	 held	 out	 for	 validation	 and	 testing,	

respectively.	

DeepSTARR	model	architecture	and	training	

DeepSTARR	was	designed	as	a	multi-task	convolutional	neural	network	(CNN)	that	uses	

one-hot	 encoded	 249	 bp	 long	 DNA	 sequence	 (A=[1,0,0,0],	 C=[0,1,0,0],	 G=[0,0,1,0],	

T=[0,0,0,1])	to	predict	both	its	developmental	and	housekeeping	enhancer	activities	(Fig	

1C).	 We	 adapted	 the	 Basset	 CNN	 architecture12	 and	 built	 DeepSTARR	 with	 four	 1D	

convolutional	 layers	 (filters=246,60,60,120;	 size=7,3,5,3),	 each	 followed	 by	 batch	

normalization,	a	ReLU	non-linearity,	and	max-pooling	(size=2).	After	the	convolutional	

layers	there	are	two	fully	connected	layers,	each	with	256	neurons	and	followed	by	batch	

normalization,	a	ReLU	non-linearity,	and	dropout	where	the	fraction	is	0.4.	The	final	layer	

mapped	 to	 both	 developmental	 and	 housekeeping	 outputs.	 Hyperparameters	 were	

manually	 adjusted	 to	 yield	 best	 performance	 on	 the	 validation	 set.	 The	 model	 was	

implemented	 and	 trained	 in	 Keras	 (v.2.2.413)	 (with	 TensorFlow	 v.1.14.014)	 using	 the	

Adam	optimizer15	(learning	rate	=	0.002),	mean	squared	error	(MSE)	as	loss	function,	a	
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batch	 size	 of	 128,	 and	 early	 stopping	 with	 patience	 of	 ten	 epochs.	 Model	 training,	

hyperparameter	tuning	and	performance	evaluation	were	performed	on	different	sets	of	

genomic	regions	in	distinct	chromosomes.	

We	also	explored	how	different	architecture	choices	affect	the	model	performance.	We	

built	different	models	changing	the	number	of	convolutional	and	fully	connected	layers,	

number	of	convolutional	filters	of	the	first	layer,	and	the	size	of	the	convolutional	filter	of	

the	first	layer,	and	assessed	their	performance	on	predicting	enhancer	activity	(validation	

set	 sequences)	and	motif	 importance	 (motif	mutation	 fold-changes)	 (Fig	S2).	For	each	

combination	of	parameters,	we	trained	at	least	10	different	models.	

Performance	evaluation	

The	 performance	 of	 the	 model	 was	 evaluated	 separately	 for	 developmental	 and	

housekeeping	 predictions	 on	 the	 held-out	 test	 sequences.	 We	 used	 the	 Pearson	

correlation	coefficient	(PCC)	across	all	bins	 for	a	quantitative	genome-wide	evaluation	

and	the	area	under	the	precision-recall	curve	(AUPRC;	calculated	using	pr.curve	from	R	

package	 PRROC	 v.1.3.115)	 for	 enhancer	 classification	 (enhancers	 vs.	 2,685	 negative	

control	regions	from	the	test	set).	We	also	report	the	model	performance	across	bins	from	

the	test	set	not	overlapping	with	repeats	(from	RepeatMasker	dm3;	Fig	S3),	or	only	the	

ones	overlapping	accessible	elements7	and	active	enhancers	(Fig	S4).	

To	test	the	robustness	of	the	model,	we	trained	1,000	DeepSTARR	models	with	the	same	

set	 of	 hyperparameters	 and	 compared	 their	 performance.	 This	 accounted	 for	 the	

stochastic	heterogeneity	due	to	the	random	initialized	weights	in	the	neural	network.	

Prediction	on	full	Drosophila	genome	

We	extracted	249	bp	sequences	tiled	across	the	Drosophila	dm3	genome	with	a	stride	of	

20	 bp	 using	 ‘‘bedtools	 makewindows’’	 (parameters	 -w	 249	 -s	 20’)	 and	 ‘‘bedtools	

getfasta”16.	We	next	predicted	the	developmental	and	housekeeping	enhancer	activity	of	

each	 genomic	window	with	 DeepSTARR	 and	 averaged	 these	 per	 nucleotide	 to	 obtain	

genome-wide	 coverage.	 The	 DeepSTARR	 predicted	 coverage	 tracks	 are	 shown	 as	

examples	 in	 Fig	 1B	 and	 S1A,B	 and	 are	 available	 at	

https://genome.ucsc.edu/s/bernardo.almeida/DeepSTARR_manuscript.	

Models	for	comparison	

The	 performance	 of	 DeepSTARR	 in	 the	 test	 set	 sequences	 was	 compared	 with	 two	

different	methods:	(1)	a	gapped	k-mer	support	vector	machine	(gkm-SVM)17	and	(2)	a	

lasso	regression	model	based	on	TF	motif	counts	(Fig	S1D,	S4).	
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(1) We	 used	 a	 10-fold	 cross-validation	 scheme	 to	 train	 a	 developmental	 and	 a

housekeeping	gkm-SVM	model	to	classify	249	bp	DNA	sequences	into	enhancers.	Training

was	 performed	 using	 developmental	 or	 housekeeping	 enhancers	 and	 a	 set	 of	 21,463

negative	control	regions	from	the	training	set.	The	gkm-SVMs	were	done	using	LS-GKM18

and	the	following	parameters:	(dev)	gkmtrain	-t	0	-l	8	-k	5	-x	10;	(hk)	gkmtrain	-t	0	-l	11	-

k	7	-x	10.	We	used	the	resulting	support	vectors	of	each	trained	model	to	score	the	DNA

sequences	of	the	test	set	by	running	gkmpredict	and	used	these	scores	for	the	PCC	and

AUPRC	analysis.

(2) We	trained	lasso	regression	models	for	developmental	and	housekeeping	enhancer

activity	using	the	counts	of	6,502	known	TF	motifs	(see	“Reference	compendium	of	non-

redundant	TF	motifs”	below)	as	features	across	40,000	random	selected	bins	from	the

training	set.	Motif	counts	were	calculated	using	the	matchMotifs	function	from	R	package

motifmatchr	 (v.1.4.019)	 with	 the	 following	 parameters:	 genome	 =

“BSgenome.Dmelanogaster.UCSC.dm3”,	p.cutoff	=	5e-04,	bg="even".	The	model	was	trained

using	the	optimal	lambda	retrieved	from	10-fold	cross-validation	and	the	glmnet	function

from	R	package	glmnet	(v.2.0-1620).

Nucleotide	contribution	scores	

We	 used	 DeepExplainer	 (the	 DeepSHAP	 implementation	 of	 DeepLIFT,	 see	 refs.	 21–23;	

update	 from	

https://github.com/AvantiShri/shap/blob/master/shap/explainers/deep/deep_tf.py)	

to	compute	contribution	scores	for	all	nucleotides	 in	all	sequences	 in	respect	to	either	

developmental	 or	 housekeeping	 enhancer	 activity.	We	 used	 100	 dinucleotide-shuffled	

versions	of	each	input	sequence	as	reference	sequences.	For	each	sequence,	the	obtained	

hypothetical	 importance	 scores	were	multiplied	by	 the	one-hot	encoded	matrix	of	 the	

sequences	to	derive	the	final	nucleotide	contribution	scores,	which	were	visualized	using	

the	ggseqlogo	function	from	R	package	ggseqlogo	(v.0.124).	

Motif	discovery	using	TF–Modisco	

To	consolidate	motifs,	we	ran	TF–Modisco	(v.0.5.12.025)	on	the	nucleotide	contribution	

scores	 for	 each	 enhancer	 type	 separately	 using	 all	 developmental	 or	 housekeeping	

enhancers	 (Fig	 2B).	 We	 specified	 the	 following	 parameters:	 sliding_window_size=15,	

flank_size=5,	 max_seqlets_per_metacluster=50000	 and	

TfModiscoSeqletsToPatternsFactory(trim_to_window_size=15,	 initial_flank_to_add=5).	

Motifs	 supported	 by	 less	 than	 35	 seqlets	were	 discarded.	 The	TF-Modisco	 discovered	

motifs	are	detailed	in	Fig	S6,	including	the	average	contribution	scores,	converted	PWM	
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logo	 and	 the	 closest	match	 from	 the	 TF	motif	 database	 (referenced	 below;	 similarity	

assessed	using	TOMTOM26).	We	trimmed	the	PWM	motifs	by	removing	flanking	positions	

with	an	information	content	lower	than	0.5	and	show	the	final	consolidated	motifs	in	Fig	

2B.	

Comparison	with	native	chromatin	and	enhancer	features	

We	compared	DeepSTARR	predicted	and	experimental	UMI-STARR-seq	developmental	

and	housekeeping	enhancer	activities	with	the	endogenous	DNA	accessibility1,	nascent	

transcription27	and	H3K4me1	and	H3K27ac	chromatin	marks28.	We	collected	peaks	from	

all	datasets,	extended	to	1	kb,	and	computed	the	log	average	of	the	read	coverage	over	the	

entire	1	kb.	For	each	dataset,	except	nascent	transcription,	we	normalized	the	signal	over	

each	respective	input.	We	calculated	pairwise	PCCs	between	the	different	measures	and	

performed	hierarchical	clustering	(“complete”	method)	using	 the	correlation	values	as	

similarities	and	the	pheatmap	R	package	(v.1.0.1229;	Fig	S28).	

Reference	compendium	of	non-redundant	TF	motifs	

Reference	compendium	of	non-redundant	TF	motifs	

6,502	 TF	 motif	 models	 were	 obtained	 from	 iRegulon	

(http://iregulon.aertslab.org/collections.html	 30)	 covering	 the	 following	 databases:	

Bergman	 (version	 1.131),	 CIS-BP	 (version	 1.0232),	 FlyFactorSurvey	 (201033),	 HOMER	

(201034),	 JASPAR	 (version	 5.0_ALPHA35),	 Stark	 (200736)	 and	 iDMMPMM	 (200937).	We	

systematically	 collapsed	 redundant	 motifs	 by	 similarity	 by	 a	 previously	 described	

approach38.	 Specifically,	 we	 computed	 the	 distances	 between	 all	 motif	 pairs	 using	

TOMTOM26	 and	 performed	 hierarchical	 clustering	 using	 Pearson	 correlation	 as	 the	

distance	metric	 and	 complete	 linkage	using	 the	hclust	 R	 function.	The	 tree	was	 cut	 at	

height	0.8,	resulting	in	901	non-redundant	motif	clusters	that	were	manually	annotated	

(Fig	S7A-E).	Clustering	of	motifs	from	each	cluster	and	their	logos	were	visualized	using	

the	motifStack	R	package	(v.1.26.039).	The	code	and	TF	motif	compendium	are	available	

from	https://github.com/bernardo-de-almeida/motif-clustering.	

TF	motif	enrichment	analyses	in	developmental	and	housekeeping	enhancers	

We	tested	the	enrichment	of	each	TF	motif	in	developmental	or	housekeeping	enhancers	

(based	 on	 UMI-STARR-seq	 data,	 independent	 of	 their	 DeepSTARR	 predictions)	 over	

negative	genomic	regions	(Fig	S7F,G,	Supplementary	Table	4).	Counts	for	each	motif	in	

each	 sequence	 were	 calculated	 using	 the	 matchMotifs	 function	 from	 R	 package	
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motifmatchr	 (v.1.4.019)	 with	 the	 following	 parameters:	 genome	 =	

“BSgenome.Dmelanogaster.UCSC.dm3”,	 p.cutoff	 =	 1e-04,	 bg="genome".	 For	 each	enhancer	

type,	we	assessed	the	differential	distribution	of	each	motif	between	the	enhancers	and	

negative	regions	by	two-sided	Fisher’s	exact	test.	Obtained	P-values	were	corrected	for	

multiple	testing	by	Benjamini-Hochberg	procedure	and	considered	significant	 if	FDR	≤	

0.05.	To	remove	motif	redundancy,	only	the	most	significant	TF	motif	per	motif	cluster	

was	shown.	

TF	motif	mutagenesis	in	Drosophila	S2	enhancers	

Oligo	library	design	

Selection	of	enhancer	regions	

A	comprehensive	 library	of	5,082	wildtype	enhancer	 sequences	 in	D.	melanogaster	 S2	

cells	was	 compiled	 by	 selecting	 previously	 published	 developmental1,	 housekeeping40	

and	inducible	(ecdysone10	and	Wnt	signaling11)	enhancers.	249	bp	sequences	centered	on	

the	enhancers’	summit	in	both	forward	and	reverse	orientation	were	retrieved.	We	added	

524	249-bp	negative	genomic	regions	in	both	orientations	as	controls	(Supplementary	

Table	5).	

Mapping	of	TF	motif	instances	and	generation	of	motif	mutations	

We	selected	eight	predicted	developmental	motifs	(GATA,	AP-1,	twist,	Trl,	SREBP,	CREB,	

ETS,	STAT),	four	predicted	housekeeping	motifs	(Dref,	Ohler1,	Ohler6,	Ohler7)	and	three	

control	 motifs	 (length-matched	 random	 motifs	 to	 control	 for	 enhancer-sequence	

perturbation).	 For	 each	 motif	 type,	 we	 mapped	 all	 instances	 using	 string-matching	

(shorter	motifs	–	GATA:	GATAA;	AP-1:	TGA.TCA;	twist:	CATCTG/CATATG;	ETS:	CCGGAA;	

Trl:	GAGAG;	Dref:	ATCGAT;	Ohler1:	GTGTGACC;	Ohler6:	AAAATACCA;	Ohler	7:	CA.C.CTA;	

control:	TAGG,	GGGCT,	CCTTA)	or	PWM-matching	(longer	motifs	–	SREBP,	CREB,	STAT,	

and	 also	 ETS,	 using	 TF-Modisco	 PWMs	 and	 the	matchMotifs	 function	 from	R	 package	

motifmatchr	 (v.1.4.019)	 with	 the	 following	 parameters:	 genome	 =	

“BSgenome.Dmelanogaster.UCSC.dm3”,	p.cutoff	=	5e-04,	bg="genome")	in	2,375	enhancers	

(both	motif	orientations)	and	mutated	all	 instances	simultaneously	 to	a	motif	 shuffled	

variant	(Supplementary	Table	5;	Fig	S9A).	In	addition,	for	the	GATA,	AP-1,	twist,	Trl,	and	

Dref	motifs	we	mutated	each	instance	individually	to	assess	their	importance.	Here,	we	

used	 string-matching	 not	 to	 identify	 motif	 instances	 per	 se	 but	 to	 specifically	 select	

instances	with	identical	cores	in	order	to	assess	their	importance	and	important	features	

outside	the	core.	Each	instance	for	a	given	motif	was	mutated	always	to	the	same	shuffled	
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variant	to	allow	the	comparison	of	effects	between	instances	of	the	same	motif	type.	We	

designed	motif-mutant	 sequences	 for	 each	 enhancer	 only	 for	 the	 orientation	with	 the	

strongest	wildtype	 enhancer	 activity.	 In	 addition,	 for	 GATA,	 AP-1,	 twist,	 Trl,	 and	Dref	

motifs,	we	repeated	mutations	with	two	other	different	shuffled	variants	in	50	enhancers	

to	control	for	the	impact	of	the	selected	shuffled	variant	(Supplementary	Table	5;	Fig	

S9C).	

Scanning	mutagenesis	of	five	enhancers	

We	 selected	 four	 developmental	 and	 one	 housekeeping	 enhancer	 from	 above	 and	

scrambled	the	nucleotides	within	10	bp	windows	with	5	bp	steps,	meaning	5	bp	overlap	

between	10	bp	windows,	resulting	in	49	mutant	variants	per	enhancer	(Supplementary	

Table	5;	Fig	S5).	The	effect	of	scrambling	each	window	on	the	enhancer	activity	reveals	

the	importance	of	the	respective	sequences.	

Enhancers	with	swapped	GATA	motif	flanks	

We	 selected	100	developmental	 enhancers	 from	above	 that	 contain	2	GATA	 instances	

(inst1	and	inst2)	with	different	importance	as	predicted	by	DeepSTARR	and	swapped	the	

flanking	nucleotides	 (both	2	bp	and	5	bp	 separately)	between	both	 instances	 (Fig	4D,	

S16).	For	each	enhancer,	we	designed	sequences	where	the	flanks	of	inst1	were	replaced	

by	the	flanks	of	 inst2	and	vice	versa,	resulting	 in	sequences	where	both	the	two	GATA	

instances	 contained	 either	 the	 flanks	 of	 inst1	 or	 the	 flanks	 of	 inst2.	 In	 addition,	when	

replacing	the	flanks	of	inst1	by	the	flanks	of	inst2,	we	also	mutated	inst2	to	assess	how	the	

flanks	of	 inst2	 affected	 the	contribution	of	 inst1.	The	opposite	was	also	done,	with	 the	

flanks	of	inst2	being	replaced	by	the	flanks	of	inst1	together	with	mutation	of	inst1.	Note	

that	all	selected	instances	had	identical	core	sequences	(i.e.	all	GATA	instances	had	the	

identical	 core	 GATAA),	 and	 thus	 the	 variance	 in	 motif	 mutation	 effects	 can	 only	 be	

explained	by	the	flanking	sequence.	The	mutated	sequences	are	listed	in	Supplementary	

Table	5.	47	active	enhancers	that	contained	one	strong	and	one	weak	GATA	instances	(≥	

2-fold	difference	as	assessed	afterwards	by	mutagenesis)	were	used	for	the	analyses	in

Fig	4D	and	S16	(Supplementary	Table	11).

Designing	of	synthetic	S2	developmental	enhancers	

1	billion	random	249	bp	DNA	sequences	were	generated	in	bash	with	the	following	code:	

cat	/dev/urandom	|	tr	-dc	'ACGT'	|	fold	-w	249	|	head	-n	1000000000.	Bowtie	v.1.2.2	4	was	

used	to	remove	sequences	that	exist	in	the	D.	melanogaster	genome,	which	were	none.	

The	developmental	enhancer	activity	of	these	sequences	was	predicted	using	DeepSTARR	
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and	249	sequences	spanning	different	activity	levels	were	selected	for	the	oligo	library	

(Supplementary	Table	5	and	17).	

Oligo	library	synthesis	and	UMI-STARR-seq	

The	 Drosophila	 enhancers’	 motif	 mutagenesis	 oligo	 library	 contained	 wildtype	 (both	

orientations)	 and	mutant	 enhancers,	 enhancers	with	 swapped	GATA	motif	 flanks	 and	

synthetic	enhancer	sequences	(Supplementary	Table	5).	All	sequences	were	designed	

using	the	dm3	genome	version.	The	enhancer	sequences	spanned	249	bp	total,	flanked	by	

the	 Illumina	 i5	 (25	 bp;	 5′ -TCCCTACACGACGCTCTTCCGATCT)	 and	 i7	 (26	 bp;	 5′	

AGATCGGAAGAGCACACGTCTGAACT)	 adaptor	 sequences	 upstream	 and	 downstream,	

respectively,	 serving	 as	 constant	 linkers	 for	 amplification	 and	 cloning.	 The	 resulting	

21,758-plex	300-mer	oligonucleotide	library	was	synthesized	by	Twist	Bioscience.	UMI-

STARR-seq	using	this	oligo	library	was	performed	(“UMI-STARR-seq	experiments”)	and	

analyzed	 (“Oligo	 library	 UMI-STARR-seq	 data	 analysis”)	 as	 described	 above.	 We	

performed	 three	 independent	 replicates	 for	 developmental	 and	housekeeping	 screens	

(correlation	PCC=0.94-0.98;	Fig	S9B).	

TF	motif	mutation	analysis	and	equivalency	

From	the	candidate	249	bp	enhancers,	we	identified	855	active	developmental	and	905	

active	housekeeping	Drosophila	enhancers	(log2	wildtype	activity	in	oligo	UMI-STARR-

seq	>=	3.15	and	2.51,	respectively;	the	strongest	negative	region	in	each	screen)	that	we	

used	in	the	subsequent	TF	motif	mutation	analyses.	The	impact	of	mutating	all	instances	

of	a	TF	motif	type	simultaneously	or	each	instance	individually	was	measured	as	the	log2	

fold-change	 enhancer	 activity	 between	 the	 respective	mutant	 and	wildtype	 sequences	

(Supplementary	 Table	 6	 and	 8).	 This	 was	 done	 separately	 for	 developmental	 and	

housekeeping	enhancer	activities.	

Motif	non-equivalency	across	all	enhancers	(Fig	3B,	S12B,D)	or	within	the	same	enhancer	

(Fig	3A,C)	was	assessed	by	comparing	the	impact	of	mutating	individual	instances	of	the	

same	TF	motif,	i.e.	the	log2	fold-changes	of	each	instance	(Supplementary	Table	8).	For	

the	comparison	between	instances	in	the	same	enhancer,	only	enhancers	that	require	the	

TF	motif	(>	2-fold	reduction	in	activity	after	mutating	all	instances)	and	contain	two	or	

more	 instances	were	 used.	Motif	 instances	with	 >2-fold	 different	 contributions	 in	 the	

same	 enhancer	 were	 considered	 as	 non-equivalent.	 The	 same	 comparison	 across	

enhancers	or	within	the	same	enhancer	was	performed	for	the	three	control	motifs.	
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Motif	syntax	features	

DeepSTARR	predicted	global	importance	of	motif	types	and	comparison	with	motif	

enrichment	

To	quantify	the	global	importance	of	all	known	TF	motifs	to	enhancer	activity	in	silico	(see	

ref.	41),	we	embedded	each	motif	from	the	6,502	TF	motif	compendium	at	five	different	

locations	and	in	both	orientations	in	100	random	backbone	DNA	sequences	and	predicted	

their	developmental	and	housekeeping	enhancer	activity	with	DeepSTARR.	The	249	bp	

backbone	sequences	were	generated	by	sampling	the	base	at	each	position	with	equal	

probability.	The	five	different	locations	were	the	same	for	all	motifs,	centered	at	positions	

25,	 75,	 125	 (middle	 of	 the	 249	 bp	 oligo),	 175	 and	 225.	 For	 each	motif,	 we	 used	 the	

sequence	corresponding	to	the	highest	affinity	according	to	the	annotated	PWM	models.	

The	 average	 activity	 across	 the	 different	 locations	 per	 backbone	 was	 divided	 by	 the	

backbone	initial	activity	to	get	the	predicted	increase	in	enhancer	activity	per	TF	motif.	

The	resultant	log2	fold-change	was	averaged	across	all	100	backbones	to	derive	the	final	

global	 importance	 of	 each	 TF	 motif.	 Using	 random	 sequences	 allows	 to	 reduce	 the	

influence	 of	 background	 noise	 or	 other	 confounding	 signals	 that	may	 exist	 in	 a	 given	

sequence	when	assessing	the	global	importance	of	a	TF	motif	for	the	model	predictions41.	

The	 global	 motif	 importance	 predicted	 by	 DeepSTARR	 was	 compared	 with	 the	

enrichment	of	TF	motifs	at	developmental	and	housekeeping	enhancers,	measured	as	the	

two-sided	Fisher’s	exact	test	log2	odds	ratio	(described	in	“TF	motif	enrichment	analyses	

in	developmental	and	housekeeping	enhancers”)	(Fig	2D,	Supplementary	Table	7).	To	

remove	 motif	 redundancy,	 only	 the	 TF	 motif	 with	 the	 strongest	 predicted	 global	

importance	or	the	strongest	motif	enrichment	per	motif	cluster	are	shown	in	Fig	2D.	

DeepSTARR	predictions	for	the	contribution	of	motif	instances	

We	used	two	complementary	approaches	to	measure	the	predicted	contribution	of	each	

motif	instance	by	DeepSTARR.	

First,	we	measured	the	predicted	importance	of	all	string-matched	instances	of	each	TF	

motif	type	in	9,074	developmental	enhancers,	6,369	housekeeping	enhancers	or	26,938	

negative	 genomic	 regions	 (Fig	 S8A,	 S12A,C;	 Supplementary	 Table	 9).	 The	 predicted	

importance	of	an	instance	was	calculated	as	the	average	developmental	or	housekeeping	

DeepSTARR	contribution	scores	over	all	its	nucleotides.	These	scores	represent	the	global	

contribution	of	motif	instances	captured	by	the	model	and	were	used	for	the	analyses	of	

figures:	4A-C,	S8A,	S12A,C,	S14A,	S15.	
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Second,	 to	 compare	with	 the	 experimentally	 derived	motif	 importance	 through	motif	

mutagenesis,	we	used	DeepSTARR	to	predict	the	log2	fold-change	between	wildtype	and	

the	motif-mutant	enhancer	sequences	included	in	the	oligo	library	for	all	instances	of	the	

different	motif	types	(Fig	3B,D,	S13,	S17A).	This	was	done	by	calculating	the	log2	fold-

change	 between	 the	 predicted	 activity	 of	 the	 wildtype	 and	 respective	 motif-mutant	

sequences.	 Since	 the	 experimentally	 derived	 importance	 can	 be	 dependent	 on	 the	

shuffled	mutant	variant	selected,	this	provides	a	more	direct	evaluation	of	the	capability	

of	DeepSTARR	to	predict	 the	 importance	of	a	motif	 instance	assessed	by	experimental	

mutagenesis.	

Scoring	of	TF	motif	instances	with	PWM	motif	scores	

To	 assess	 how	 the	PWM	motif	models	 predict	 the	 importance	 of	 a	motif	 instance,	we	

scored	the	wildtype	sequence	of	each	mutated	motif	instance	(extended	10	nucleotides	

on	each	flank	to	account	for	the	flanking	sequence)	with	the	PWM	models	of	the	selected	

TF	motifs	(Supplementary	Table	10).	We	used	the	matchMotifs	function	from	R	package	

motifmatchr	(v.1.4.0;	genome	=	“BSgenome.Dmelanogaster.UCSC.dm3”,	bg="even"19)	with	

a	p-value	cutoff	of	1	to	retrieve	the	PWM	scores	of	all	sequences.	These	PWM	scores	were	

compared	with	the	experimental	 log2	fold-changes	using	Pearson	correlation	(Fig	3D).	

We	tested	different	PWM	models	for	each	TF	motif	if	available	and	reported	always	the	

one	with	the	best	correlation	(Supplementary	Table	10).	

Linear	model	with	motif	syntax	rules	to	predict	motif	importance	

For	 each	 TF	 motif	 type,	 we	 built	 a	 multiple	 linear	 regression	 model	 to	 predict	 the	

contribution	of	its	individual	instances	(log2	fold-change)	using	as	covariates	the	number	

of	 instances	 of	 the	 respective	motif	 type	 in	 the	 enhancer,	 the	motif	 core	 and	 flanking	

nucleotides	 (5	 bp	 on	 each	 side),	 the	 motif	 position	 relative	 to	 the	 enhancer	 center42	

(center:	 -/+	25	bp,	 flanks:	 -/+25:75	bp,	 boundaries:	 -/+75:125	bp;	 Fig	 S17B),	 and	 the	

distance	to	all	other	TF	motifs	(close:	<	25	bp;	intermediate:	≥	25	bp	and	≤	50	bp;	distal:	

>50	bp).	Only	motif	instances	that	start	after	position	5	and	end	before	position	245	of

the	249	bp	oligos	were	used,	in	order	to	be	able	to	retrieve	their	5	bp	flanking	sequences.

In	addition,	for	the	motif	distance	analyses	only	non-overlapping	motif	pairs	were	used.

All	models	were	built	using	the	Caret	R	package	(v.	6.0-8043)	and	10-fold	cross-validation.
Predictions	for	each	held-out	test	sets	were	used	to	compare	with	the	observed	log2	fold-

changes	 and	 assess	 model	 performance	 (Fig	 S13).	 The	 linear	 model	 coefficients	 and

respective	p-values	were	used	as	metrics	of	importance	for	each	feature	(Fig	S23A,C).
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To	assess	if	these	syntax	rules	are	sufficient	to	identify	functional	instances,	we	used	these	

linear	models	to	select	instances	of	each	TF	motif	in	the	test	chromosome	with	a	predicted	

favorable	syntax	context:	motif	number,	flanks,	position	and	inter-motif	distances.	For	each	

motif	 type,	 we	 identified	 all	 putative	 instances	with	 the	matchMotifs	 function	 from	 R	

package	motifmatchr	(v.1.4.0;	genome	=	“BSgenome.Dmelanogaster.UCSC.dm3”,	p.cutoff	=	

5e-04,	 bg="even"19),	 extracted	 all	 syntax	 features	 for	 each	 instance,	 predicted	 their	

importance	(log2	fold-change),	and	selected	instances	with	a	predicted	fold-change	after	

mutation	 >=	 2	 as	 functional	 instances.	 We	 then	 overlapped	 these	 instances	 with	
developmental	(for	GATA,	AP-1,	twist,	Trl)	or	housekeeping	enhancers	(Dref)	and	all	genomic	

negative	 sequences.	 We	 tested	 if	 DeepSTARR	 could	 discriminate	 which	 instances	 are	 in	

enhancers	by	predicting	the	enhancer	activity	of	each	sequence	and	assessing	its	performance	

using	 the	 area	 under	 the	 precision-recall	 curve	 (calculated	using	pr.curve	 from	R	package	

PRROC	 v.1.3.110115).	 To	 provide	 the	 numbers	 of	 predicted	 instances	 of	 each	 motif	 in	

enhancers	or	negative	sequences	we	used	as	cut-off	the	predicted	activity	of	1.5	(Fig	S27).	

Predicted	contribution	of	motif	flanking	nucleotides	

Top	90th	and	bottom	10th	percentile	motif	instances	of	each	TF	were	selected	based	on	

their	predicted	(DeepSTARR	scores	for	core	sequence)	or	experimentally	derived	(minus	

signed	(-)	mutation	log2	fold-change)	importance.	The	DeepSTARR	contribution	scores	of	

their	 +/-	 50	 flanking	 nucleotides	were	 shown	using	 box	 plots	 (Fig	 4A,	 S14).	 For	 each	

position,	significant	differences	between	top	and	bottom	instances	were	assessed	through	

a	Wilcoxon	rank-sum	test	(p-value	<	0.001).	The	sum	of	delta	between	medians	of	top	and	

bottom	instances	for	the	positions	with	significant	differences	was	used	as	measure	of	

importance	for	the	upstream	and	downstream	flanking	sequences.	

Correlation	between	motif	importance	and	motif	flanking	sequence	

String-matched	motif	instances	of	each	TF	were	sorted	by	their	predicted	(DeepSTARR)	

or	 experimentally	 derived	 (minus	 signed	 (-)	 mutation	 log2	 fold-change)	 importance.	

Their	 5	 flanking	nucleotides	were	 shown	using	heatmaps	 and	 the	 importance	 of	 each	

nucleotide	at	each	flanking	position	summarized	using	box	plots	(Fig	4B,	S15).	Significant	

differences	between	the	four	nucleotides	per	position	were	assessed	through	Welch	One-

Way	ANOVA	test	followed	by	FDR	multiple	testing	correction.	The	motif	logos	represent	

the	frequency	of	each	nucleotide	at	each	position	among	the	top	90th	percentile	instances	

and	were	compared	with	the	logos	of	existing	PWM	models	(Fig	4C).	

The	motifs	recovered	by	DeepSTARR	were	compared	with	PWM	models	discovered	de	

novo	by	HOMER	(Fig	4C).	HOMER	(v4.10.434)	was	run	on	the	249	bp	developmental	or	
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housekeeping	 enhancer	 regions	 with	 the	 findMotifsGenome.pl	 command	 and	 the	

command	line	argument	-size	249.		

In	silico	motif	distance	preferences	

Two	 consensus	 TF	 motifs	 were	 embedded	 in	 60	 random	 backbone	 249	 bp	 DNA	

sequences,	MotifA	in	the	center	and	MotifB	at	a	range	of	distances	(d)	from	MotifA,	both	

up-	and	downstream	(Fig	5A,	S18).	Backbone	sequences	were	generated	by	sampling	the	

base	 at	 each	 position	 with	 equal	 probability.	 DeepSTARR	 was	 used	 to	 predict	 the	

developmental	or	housekeeping	activity	of	the	backbone	synthetic	sequences	(1)	without	

any	motif	(b),	(2)	only	with	MotifA	in	the	center	(A),	(3)	only	with	MotifB	d-bases	up-	or	

downstream	(B)	and	(4)	with	both	MotifA	and	MotifB	 (AB).	The	DeepSTARR	predicted	

activities	in	log	space	were	converted	to	linear	space	as	2DeepSTARR	prediction.	The	cooperativity	

between	MotifA	 and	MotifB	 at	 each	 distance	 d	 was	 then	 defined	 as	 the	 fold-change	

between	AB	and	(b	+	(A-b)	+	(B-b)	=	A+B-b),	where	a	value	of	1	means	an	additive	effect	

or	no	synergy	between	the	motifs,	and	a	value	higher	than	1	means	positive	synergy.	The	

median	 of	 fold-changes	 across	 the	 60	 backbones	 was	 used	 as	 the	 final	 cooperativity	

scores.	This	analysis	was	performed	for	all	motif	pair	combinations	of	AP-1,	SREBP,	GATA,	

Trl,	 twist	 and	 ETS	 motifs	 for	 developmental	 enhancer	 activity,	 and	 Dref,	 Ohler1	 and	

Ohler6	 for	 housekeeping	 enhancer	 activity	 in	 both	 strand	 orientations.	 Pairs	 with	 a	

negative	control	motif	(GGGCT)	were	also	included.	

Enrichment	of	motif	pairs	at	different	distances	in	genomic	enhancers	

We	 mapped	 all	 instances	 of	 the	 different	 TF	 motif	 instances	 across	 all	 9,074	

developmental	enhancers,	6,369	housekeeping	enhancers	and	26,938	negative	genomic	

regions.	 We	 used	 their	 annotated	 PWM	 models	 (Supplementary	 Table	 10)	 and	 the	

matchMotifs	 function	 from	 R	 package	 motifmatchr	 (v.1.4.019)	 with	 the	 following	

parameters:	 genome	 =	 “BSgenome.Dmelanogaster.UCSC.dm3”,	 p.cutoff	 =	 5e-04,	

bg="genome".	 Overlapping	 instances	 (minimum	 50%)	 for	 the	 same	 TF	 motif	 were	

collapsed	and	counted	only	once.	To	compute	whether	MotifA	is	located	within	a	certain	

distance	 (bins:	 0-25,	 25-50,	 50-75,	 75-100,	 100-125,	 125-150,	 150-250	 bp)	 of	MotifB	

more/less	frequently	in	enhancers	than	in	negative	sequences,	we	counted	the	number	of	

times	a	MotifA	instance	is	at	each	distance	bin	to	a	MotifB	instance	in	enhancers	and	in	

negative	sequences.	The	enrichment	or	depletion	of	motif	pairs	at	each	bin	was	tested	

with	 two-sided	Fisher’s	exact	 test	and	 the	 log2	odds	ratio	used	as	metric.	Obtained	P-

values	 were	 corrected	 for	 multiple	 testing	 by	 Benjamini-Hochberg	 procedure	 and	

considered	 significant	 if	 FDR	 ≤	 0.05.	 We	 performed	 this	 analysis	 separately	 for	 all	

95



de	Almeida,	et	al	

developmental	motif	pairs	in	developmental	enhancers	and	all	housekeeping	motif	pairs	

in	housekeeping	enhancers	(Fig	5B,	S19A,C,D).	

Association	between	motif	pair	distances	and	enhancer	activity	

We	 obtained	 the	 positions	 of	 the	 different	 TF	 motif	 instances	 across	 all	 9,074	

developmental	enhancers,	6,369	housekeeping	enhancers	and	26,938	negative	genomic	

regions	as	described	above	(“Enrichment	of	motif	pairs	at	different	distances	in	genomic	

enhancers”).	For	each	pair	of	motif	instances	at	each	distance	bin	(0-25,	25-50,	50-75,	75-

100,	100-125,	125-150,	150-250	bp),	we	tested	the	association	between	enhancer	activity	

and	 the	 presence	 of	 the	 pair	 at	 the	 respective	 distance	 bin	 using	 a	 multiple	 linear	

regression,	including	as	independent	variables	the	number	of	instances	for	the	different	

developmental	or	housekeeping	TF	motif	types.	The	linear	model	coefficient	was	used	as	

metric	and	considered	significant	if	the	FDR-corrected	p-values	≤	0.05.	We	performed	this	

analysis	separately	for	all	developmental	motif	pairs	in	developmental	enhancers	and	all	

housekeeping	motif	pairs	in	housekeeping	enhancers	(Fig	5B,	S19B-D).	

Validation	of	motif	distance	preferences	by	motif	mutagenesis	

To	 test	 how	 the	 importance	 of	 GATA	 and	 AP-1	 instances	 associate	with	 the	 absolute	

distance	d	 to	a	 second	GATA	 instance,	we	compared	 the	 log2	 fold-change	 in	enhancer	

activity	after	mutating	individual	GATA	(Fig	5D)	or	AP-1	(Fig	5E)	instances	at	close	(<	25	

bp;	n=14	and	29,	respectively)	or	longer	(>	50	bp;	n=129	and	38)	distance	to	a	second	

GATA	 instance.	 Only	 pairs	 of	 non-overlapping	motif	 instances	were	 used.	 A	Wilcoxon	

rank-sum	test	was	used	to	test	this	association.	

TF	motif	mutagenesis	in	human	HCT116	enhancers	

TF	motif	enrichment	

We	characterized	the	motif	composition	of	5,891	strong	STARR-seq	enhancers	in	human	

HCT116	cells2	using	the	501	bp	sequence	centered	on	the	summit.	We	generated	5,891	

negative	GC-matched	 genomic	 regions	using	 the	genNullSeqs	 function	 from	R	package	

gkmSVM44.	1,689	TF	motif	PWM	models	and	respective	motif	clustering	information	were	

retrieved	from	Vierstra	et	al.,38	covering	the	following	databases:	JASPAR	(2018),	Taipale	

HT-SELEX	(2013)	and	HOCOMOCO	(version	11).	Counts	 for	each	motif	 in	each	501	bp	

enhancer	and	negative	sequence	were	calculated	using	the	matchMotifs	function	from	R	

package	 motifmatchr	 (v.1.4.019)	 with	 the	 following	 parameters:	 genome	 =	

“BSgenome.Hsapiens.UCSC.hg19”,	 p.cutoff	 =	 1e-04,	 bg="genome".	 We	 assessed	 the	
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differential	 distribution	of	 each	motif	 between	 the	 enhancers	 and	negative	 regions	by	

two-sided	 Fisher’s	 exact	 test.	 We	 selected	 the	 nine	 TF	 motifs	 with	 the	 strongest	

enrichment	 in	 enhancers:	 AP-1,	 P53,	 MAF,	 CREB1,	 ETS,	 EGR1,	 MECP2,	 E2F1	 and	

Ebox/MYC	(Supplementary	Table	12).	

TF	motif	mutagenesis	oligo	library	design	and	synthesis	

Generation	of	TF	motif	mutations	

For	 UMI-STARR-seq	 of	 wild	 type	 and	mutant	 enhancers,	 we	 selected	 3,200	 enhancer	

candidates,	defining	short	249	bp	windows	(the	limits	of	oligo	synthesis),	and	mapped	

the	 position	 of	 all	 instances	 of	 the	 nine	 TF	motif	 types	 in	 these	 candidates	 using	 the	

matchMotifs	 function	 from	 R	 package	 motifmatchr	 (v.1.4.019)	 with	 the	 following	

parameters:	 genome	 =	 “BSgenome.Hsapiens.UCSC.hg19”,	 p.cutoff	 =	 5e-04,	 bg="genome".	

Overlapping	instances	(minimum	70%)	for	the	same	TF	motif	were	collapsed.	We	also	

mapped	all	instances	of	four	control	motifs	(length-matched	random	motifs	to	control	for	

enhancer-sequence	 perturbation)	 using	 string-matching.	 We	 then	 designed	 enhancer	

variants	with	all	instances	of	each	motif	type	mutated	simultaneously	or	individually	to	a	

motif	 shuffled	 variant	 (Supplementary	 Table	 13;	 Fig	 S20A).	 Each	 instance	 for	 a	 given	

motif	was	mutated	always	to	the	same	shuffled	variant	to	allow	the	comparison	of	effects	

between	motif	 instances.	We	designed	motif-mutant	sequences	for	each	enhancer	only	

for	the	orientation	with	the	strongest	activity	in	the	genome-wide	STARR-seq.	In	addition,	

for	each	motif	type	we	repeated	mutations	with	two	other	different	shuffled	variants	in	

50	enhancers	to	control	for	the	impact	of	the	selected	shuffled	variant	(Supplementary	

Table	13;	Fig	S20F).	

Oligo	library	synthesis	and	UMI-STARR-seq	

The	 final	 human	 enhancers’	 motif	 mutagenesis	 library	 contained	 3,200	 wildtype	 and	

18,780	motif-mutant	enhancer	sequences	that	we	combined	with	920	249-bp	negative	

genomic	 regions	 as	 controls	 (Supplementary	 Table	 13).	 All	 sequences	were	 designed	

using	 the	 hg19	 genome	 version.	 Apart	 from	 the	 specific	 sequences,	 this	 human	motif	

mutagenesis	 library	exhibits	 the	same	specifications	as	the	Drosophila	 library	and	was	

also	 synthesized	 by	 Twist	 Bioscience.	 UMI-STARR-seq	 using	 this	 oligo	 library	 was	

performed	(“UMI-STARR-seq	experiments”)	and	analyzed	(“Oligo	library	UMI-STARR-seq	

data	 analysis”)	 as	 described	 above.	 We	 performed	 two	 independent	 replicates	

(correlation	PCC=0.99;	Fig	S20B).	
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TF	motif	mutation	analysis	

From	the	3,200	designed	candidate	249	bp	enhancers,	we	identified	1,083	active	short	

human	enhancers	(log2	wildtype	activity	in	oligo	UMI-STARR-seq	>=	2.03,	the	strongest	

negative	region;	Fig	S10C)	that	we	used	in	the	subsequent	TF	motif	analyses.	The	impact	

of	mutating	all	instances	of	a	TF	motif	type	simultaneously	or	each	instance	individually	

was	calculated	as	the	log2	fold-change	enhancer	activity	between	the	respective	mutant	

and	wildtype	sequences	(Fig	S20D,E,	S21A;	Supplementary	Table	14	and	15).	Motif	non-

equivalency	across	all	enhancers	(Fig	S21A)	or	within	the	same	enhancer	(Fig	6B,C)	was	

assessed	as	in	the	Drosophila	enhancers.	

Validation	of	important	TF	motif	instances	with	genomic	DNase	I	footprinting	data	

We	 compared	 the	 importance	 of	 individual	 motif	 instances	 with	 genomic	 DNase	 I	

footprinting	 data	 of	 RKO	 cells	 (another	 human	 colon	 cancer	 cell	 line;	

https://www.vierstra.org/resources/dgf	 38),	as	a	 surrogate	 for	TF	occupancy	 (Fig	6D).	

Footprints	 detected	 at	 different	 FPR	 adjusted	 p-value	 thresholds	 and	 coverage	 tracks	

with	 observed	 and	 expected	 cleavage	 counts	 were	 downloaded	 from	

https://resources.altius.org/~jvierstra/projects/footprinting.2020/per.dataset/h.RKO-

DS40362/,	 in	 hg38	 coordinates.	 All	 coordinates	 were	 converted	 to	 hg19	 coordinates	

using	 the	 UCSC	 liftOver	 tool45	 and	 the	 hg38ToHg19.over.chain	 chain	 file	

(https://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/hg38ToHg19.over.chain.

gz).	For	each	TF	motif	type,	a	Wilcoxon	rank-sum	test	was	used	to	determine	whether	the	

mutation	 log2	 fold-change	 of	 instances	 overlapping	 TF	 footprints	 (FPR	 threshold	 of	

0.001)	is	significantly	greater	or	less	than	the	one	of	instances	not	overlapping	footprints.	

Only	instances	within	HCT116-accessible	enhancers	were	used	in	the	analysis.	Enhancers	

were	defined	as	accessible	if	they	overlap	any	of	the	DNase-seq	peaks	from	the	following	

ENCODE46	 identifiers	 (hg19	 coordinates)	 (https://www.encodeproject.org/):	

ENCFF001SQU,	 ENCFF001WIJ,	 ENCFF001WIK,	 ENCFF175RBN,	 ENCFF228YKV,	

ENCFF851NWR,	ENCFF927AHJ,	ENCFF945KJN	and	ENCFF360XGA.	

Association	between	motif	syntax	rules	and	the	contribution	of	TF	motif	instances	

For	 each	 TF	 motif	 type,	 we	 built	 a	 multiple	 linear	 regression	 model	 to	 predict	 the	

contribution	 of	 its	 individual	 instances	 (log2	 fold-changes)	 using	 as	 covariates	 the	

number	of	instances	of	the	respective	motif	type	in	the	enhancer,	the	motif	core	(defined	

as	the	nucleotides	included	in	each	TF	motif	PWM	model)	and	flanking	nucleotides	(5	bp	

on	 each	 side),	 the	motif	 position	 relative	 to	 the	 enhancer	 center42	 (center:	 -/+	 25	 bp,	

flanks:	-/+25:75	bp,	boundaries:	-/+75:125	bp;	Fig	S22),	and	the	distance	to	all	other	TF	
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motifs	(close:	<	25	bp;	intermediate:	≥	25	bp	and	≤	50	bp;	distal:	>50	bp)	(Fig	6E,	S21B-

E).	Only	motif	instances	that	start	after	position	5	and	end	before	position	245	of	the	249	

bp	 oligos	were	 used,	 in	 order	 to	 be	 able	 to	 retrieve	 their	 5	 bp	 flanking	 sequences.	 In	

addition,	for	the	motif	distance	analyses	only	non-overlapping	motif	pairs	were	used.	All	

models	were	built	using	the	Caret	R	package	(v.	6.0-8043)	and	10-fold	cross-validation.	
Predictions	for	each	held-out	test	sets	were	used	to	compare	with	the	observed	log2	fold-

changes	and	assess	model	performance.	For	each	TF	motif	type,	we	compared	the	main	

regression	model	with	a	simple	linear	model	only	using	the	PWM	scores	as	covariate	(Fig	

S21D).	

The	linear	model	coefficients	and	respective	p-values	were	used	as	metrics	of	importance	

for	 each	 feature	 (Fig	 6E,	 S21B,	 S23B,C).	 In	 addition,	 we	 calculated	 the	 percentage	 of	

variance	explained	by	each	covariate	(motif	syntax	features)	in	the	linear	models	built	for	

each	 TF	motif	 with	 one-way	 ANOVAs.	 For	 each	 TF	motif	 we	 generated	 100	 different	

models	randomizing	the	order	of	the	covariates	(since	the	variance	explained	depends	on	

the	order	of	covariates	entered),	quantified	the	percentage	of	variance	explained	of	each	

covariate	as	its	sum	of	squares	divided	by	the	total	sum	of	squares,	and	used	the	average	

value	across	all	100	models	as	the	final	variance	explained	per	covariate.	

DeepSTARR	prediction	of	the	importance	of	AP-1	instances	in	human	enhancers	

We	 used	 the	 DeepSTARR	 model	 trained	 in	 Drosophila	 S2	 enhancers	 to	 predict	 the	

importance	of	AP-1	instances	in	human	HCT116	enhancers.	This	was	done	by	predicting	

the	activity	of	the	wildtype	and	motif-mutant	enhancer	sequences	included	in	the	human	

oligo	 library	 for	 all	 AP-1	 instances	 and	 further	 calculating	 the	 log2	 fold-change.	 This	

predicted	log2	fold-change	was	compared	with	the	experimentally	measured	log2	fold-

change	 and	 its	 association	 assessed	 through	 Pearson	 correlation	 (Fig	 S23D;	

Supplementary	Table	16).	

Luciferase	reporter	assays	

Luciferase	reporter	assays	

We	constructed	luciferase	reporters	by	cloning	candidate	enhancers	in	both	orientations	

in	the	pGL3_DSCP_luc+	plasmid	either	upstream	of	the	DSCP	promoter	in	the	KpnI	site	(to	

create	pGL3_candidate_DSCP_luc+)	or	downstream	of	the	DSCP	promoter	in	the	SalI	site	

(to	create	pGL3_DSCP_luc+_candidate)	(Fig	S25A).	Candidate	enhancer	sequences	(one	

native	 and	 the	 three	 strongest	 synthetic	 enhancers)	 and	 five	 negative	 controls	 were	
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amplified	 from	 the	Twist	oligo	pools	and	plasmids	verified	by	 sanger	 sequencing	 (see	

Supplementary	Table	1	for	primers).	

Luciferase	assays	were	performed	in	quadruplicates	as	described	previously47.	In	short,	

Drosophila	S2	cells	were	transfected	using	jetPEI	(peqlab	13-101-40N)	in	384-well	plates	

with	30.000	cells	per	well.	For	each	transfection	we	used	30ng	of	the	pGL3	firefly	reporter	

and	3ng	of	a	Renilla	 luciferase	expressing	Ubi-RL	plasmid	as	transfection	control.	After	

transfection	cells	were	incubated	for	48h	at	27°C	in	Schneider2	Medium	supplemented	

with	10%	FBS	and	1%	penicillin/streptomycin.	

Luciferase	assay	data	analysis	

We	first	normalized	firefly	over	Renilla	luciferase	values	for	each	of	the	eight	biological	

replicates	 (independent	 transfections)	 individually	 (controlling	 for	 transfection	

efficiency).	To	normalize	to	the	core	promoters’	intrinsic	activity,	we	then	calculated	the	

fold	 change	 luciferase	 signal	 over	 the	 average	 signal	 of	 the	 five	 negative	 control	

sequences.	 For	 each	 enhancer	 candidate	 and	 construct,	 we	 used	 the	 average	 of	 the	

replicates	 as	 the	 final	 activity	 together	 with	 the	 standard	 deviation	 (Fig	 S25A;	

Supplementary	Table	18).	

Statistics	and	data	visualization	

All	 statistical	 calculations	 and	 graphical	 displays	 have	 been	 performed	 in	R	 statistical	

computing	environment	(v.3.5.148)	and	using	the	R	package	ggplot2	(v.3.2.149).	Coverage	

data	 tracks	 have	 been	 visualized	 in	 the	 UCSC	 Genome	 Browser50	 and	 used	 to	 create	

displays	 of	 representative	 genomic	 loci.	 In	 all	 box	 plots,	 the	 central	 line	 denotes	 the	

median,	 the	 box	 encompasses	 25th	 to	 75th	 percentile	 (interquartile	 range)	 and	 the	

whiskers	extend	to	1.5× interquartile	range.	

Data	availability	

The	raw	sequencing	data	are	available	from	GEO	(https://www.ncbi.nlm.nih.gov/geo/)	

under	accession	number	GSE183939.	Data	used	 to	 train	and	evaluate	 the	DeepSTARR	

model	 as	 well	 as	 the	 final	 pre-trained	 model	 are	 found	 on	 zenodo	 at	

https://doi.org/10.5281/zenodo.5502060.	 The	 pre-trained	 DeepSTARR	 model	 is	 also	

available	 in	 the	 Kipoi	 model	 repository51	 (http://kipoi.org/models/DeepSTARR/).	

Genome	 browser	 tracks	 showing	 genome-wide	 UMI-STARR-seq	 and	 DeepSTARR	
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predictions	 in	 Drosophila	 S2	 cells,	 including	 nucleotide	 contribution	 scores	 for	 all	

enhancer	sequences,	together	with	the	enhancers	used	for	mutagenesis,	mutated	motif	

instances	 and	 respective	 log2	 fold-changes	 in	 enhancer	 activity,	 are	 available	 at	

https://genome.ucsc.edu/s/bernardo.almeida/DeepSTARR_manuscript.	 Dynamic	

sequence	 tracks	 (https://github.com/pkerpedjiev/higlass-dynseq)	 and	 contribution	

scores	 are	 also	 available	 as	 a	 Reservoir	 Genome	 Browser	 session	 at	

https://resgen.io/paper-data/Almeida...%202021%20-

%20DeepSTARR/views/VNZrgd8oSsCpfZfwByDlwA.	 TF	 motif	 models	 were	 obtained	

from	 iRegulon	 (http://iregulon.aertslab.org/collections.html	 30).	DNase-seq	 and	ATAC-

seq	 data	 in	Drosophila	 S2	 cells	 were	 obtained	 from	 ref.1	 and	 7,	 respectively;	 nascent	

transcription	 from	 ref.27	 and	 H3K4me1	 and	 H3K27ac	 chromatin	 marks	 from	 ref.28.	

RepeatMasker	 dm3	 annotations	 were	 obtained	 from	

http://www.repeatmasker.org/genomes/dm3/RepeatMasker-rm405-

db20140131/dm3.fa.out.gz.	 Genomic	 DNase	 I	 footprinting	 data	 of	 RKO	 cells	 were	

downloaded	 from	

https://resources.altius.org/~jvierstra/projects/footprinting.2020/per.dataset/h.RKO-

DS40362/.	 HCT116	 DNase-seq,	 H3K27ac	 and	 H3K4me1	 data	 were	 obtained	 from	

ENCODE46	 (https://www.encodeproject.org/;	 ENCFF001SQU,	 ENCFF001WIJ,	

ENCFF001WIK,	 ENCFF175RBN,	 ENCFF228YKV,	 ENCFF851NWR,	 ENCFF927AHJ,	

ENCFF945KJN,	 ENCFF360XGA,	 ENCFF130JBP	 and	 ENCFF400KKD)	 and	 ATAC-seq	 data	

from	ref.52.	

Code	availability	

Code	used	to	process	the	genome-wide	and	oligo	UMI-STARR-seq	data,	train	DeepSTARR	

and	predict	 the	enhancer	activity	 for	new	DNA	sequences,	as	well	as	 to	reproduce	the	

results	 is	 available	on	GitHub	 (https://github.com/bernardo-de-almeida/DeepSTARR).	

The	code	and	TF	motif	compendium	are	available	from	https://github.com/bernardo-de-

almeida/motif-clustering.	
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Summary	and	discussion	

The	 DeepSTARR	 project	 (Publication	 1)	 revealed	 the	 importance	 of	 syntax	 rules	 in	

enhancers	and	how	we	still	have	a	limited	understanding	about	the	flexibility	of	important	motif	

positions	 and	 how	 the	 sequence	 context	modulates	 the	 activity	 of	 TF	motifs.	 For	 example,	 it	

remains	 unclear	 if	 motifs	 can	 work	 similarly	 in	 different	 enhancers	 and	 positions	 (acting	 as	

independent	modules)	or	in	contrast	require	specific	sequence	contexts	and	syntax	(suggesting	

interactions	and	dependencies	with	other	features).	

Here,	we	 investigated	how	many	defined	DNA	sequences	might	 functionally	 replace	 the	

wildtype	sequence	in	various	motif	and	control	positions	by	exhaustively	testing	all	possible	8-

nucleotide-long	 sequence	 variants	 at	 these	 positions	 in	 two	 enhancers	 in	 Drosophila	

melanogaster	S2	cells.	At	each	position,	hundreds	of	sequence	variants	corresponding	to	several	

different	motif	types	could	functionally	replace	the	wildtype	sequence	(i.e.	constitute	solutions),	

suggesting	that	enhancer	sequences	display	flexibility	within	and	across	motif	types.	However,	at	

each	 position,	 these	 solutions	 constituted	 only	 a	 tiny	 fraction	 of	 the	 approximately	 65,000	

possible	sequences,	indicating	that	enhancer	sequence	flexibility	is	constrained.	In	addition,	the	

solutions	differed	between	positions	and	most	TF	motifs	had	highly	context-dependent	activities.		

We	 systematically	 compared	 the	 contribution	of	 prominent	TF	motif	 types	 to	 enhancer	

activity	when	 placed	 into	 different	 positions	 along	 an	 enhancer	 to	 assess	 how	 their	 intrinsic	

strengths	are	modulated	by	the	sequence	context	in	both	Drosophila	as	well	as	human	enhancers.	

Indeed,	TF	motifs	contribute	with	different	intrinsic	strengths	that	are	strongly	modulated	by	the	

enhancer	sequence	context,	namely	the	flanking	sequence,	the	presence	and	diversity	of	other	

motif	types,	and	the	distance	between	motifs.	

Overall,	 these	 complementary	 strategies	 revealed	 that	 enhancers	 display	 constrained	

sequence	 flexibility	 and	 the	 context-specific	modulation	 of	motif	 function.	 These	 two	 general	

principles	of	 enhancer	 sequences	are	 important	 to	understand	and	predict	 enhancer	 function	

during	development,	evolution	and	in	disease.	
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Enhancers display constrained sequence flexibility
and context-specific modulation of motif function
Franziska Reiter,1,2,4 Bernardo P. de Almeida,1,2,4 and Alexander Stark1,3
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The information about when and where each gene is to be expressed is mainly encoded in the DNA sequence of enhancers,
sequence elements that comprise binding sites (motifs) for different transcription factors (TFs). Most of the research on en-
hancer sequences has been focused on TF motif presence, whereas the enhancer syntax, that is, the flexibility of important
motif positions and how the sequence context modulates the activity of TF motifs, remains poorly understood. Here, we
explore the rules of enhancer syntax by a two-pronged approach in Drosophila melanogaster S2 cells: we (1) replace important
TF motifs by all possible 65,536 eight-nucleotide-long sequences and (2) paste eight important TF motif types into 763 po-
sitions within 496 enhancers. These complementary strategies reveal that enhancers display constrained sequence flexibility
and the context-specific modulation of motif function. Important motifs can be functionally replaced by hundreds of
sequences constituting several distinct motif types, but these are only a fraction of all possible sequences and motif types.
Moreover, TF motifs contribute with different intrinsic strengths that are strongly modulated by the enhancer sequence
context (the flanking sequence, the presence and diversity of other motif types, and the distance between motifs), such
that not all motif types can work in all positions. The context-specific modulation of motif function is also a hallmark of
human enhancers, as we demonstrate experimentally. Overall, these two general principles of enhancer sequences are im-
portant to understand and predict enhancer function during development, evolution, and in disease.

[Supplemental material is available for this article.]

Transcriptional enhancers are DNA sequence elements that con-
trol gene expression by modulating the transcription of their tar-
get genes in specific cell types and conditions (Banerji et al.
1981; Levine 2010). These elements contain short sequencemotifs
bound by different transcription factors (TFs), and the combined
regulatory cues of all bound TFs determine an enhancer’s activity
(Spitz and Furlong 2012). Due to the critical role of enhancers in
development, evolution, and disease (Levine 2010; Rickels and
Shilatifard 2018), understanding how enhancer sequences encode
function is a major question in biology. Previous studies have
highlighted the importance of sequence constraints within en-
hancers, such as the presence of TF motifs and features related to
the motifs’ flanking sequences, affinities, and arrangements (their
number, order, orientation, and spacing), termed here “motif syn-
tax” (Jindal and Farley 2021). However, althoughmutations in en-
hancer sequences can change enhancer function and lead to
morphological evolution and disease (Gompel et al. 2005; Visel
et al. 2009; Levine 2010; Rickels and Shilatifard 2018), enhancers
usually display only modest or no sequence conservation across
species (Ludwig et al. 1998; Blow et al. 2010; Schmidt et al. 2010;
May et al. 2012; Arnold et al. 2014; Villar et al. 2015; Fuqua et al.
2020) and even random DNA sequences can act as enhancers (de
Boer et al. 2020; Galupa et al. 2023). Therefore, the importance
of sequence constraints and motif syntax within enhancers re-
main outstanding questions in gene regulation.

Two main models have been proposed to explain how
enhancer sequence relates to function. The enhanceosome model

assumes very strict syntax rules with invariantmotif arrangements
required for cooperative TF binding (Thanos and Maniatis 1995;
Panne 2008). In contrast, the billboard model proposes that TFs
bind independently without constraints on how motifs are ar-
ranged within the enhancer (Kulkarni and Arnosti 2003; Arnosti
and Kulkarni 2005). Yet very few enhancers fit these models, hav-
ing either invariant syntax or no constraints at all, and most en-
hancers fall in between these two extremes, with a flexible
syntax yet high degree of dependency between enhancer features
(Kulkarni and Arnosti 2003; Vockley et al. 2017; Jindal and Farley
2021). This complexity in enhancer sequence has prevented the
generalization of sequence rules derived from individual enhanc-
ers into unifying principles of the regulatory code, thus limiting
our understanding of the sequence constraints related to motif
syntax and TF activity in enhancers.

Although enhancer sequences evolve rapidly, their function,
which is comprised of enhancer strength aswell as cell type–specif-
icity, can be conserved despite significant sequence changes
(Ludwig et al. 1998, 2000; Rastegar et al. 2008; Blow et al. 2010;
Schmidt et al. 2010; Weirauch and Hughes 2010; Swanson et al.
2011; Taher et al. 2011; May et al. 2012; Arnold et al. 2014;
Villar et al. 2015;Wong et al. 2020; Vaishnav et al. 2022). This sug-
gests that there is considerable flexibility within enhancer se-
quences, and that the maintenance of function-defining features
rather than overall sequence similarity is important for enhancer
activity. This is illustrated most clearly by the maintenance of TF
motifs at invariant positions or at different relative positions

4These authors contributed equally to this work.
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within orthologous enhancer sequences (Ludwig et al. 1998, 2000;
Rastegar et al. 2008; Arnold et al. 2014; Wong et al. 2020).
However, how flexible or constrained motif positions within en-
hancers are at both, the DNA sequence and the TF motif level,
that is, howmany different sequence variants ormotif typesmight
functionally replace thewild-type sequence at importantmotif po-
sitions, has remained unknown. Similarly, even though TF motifs
have been observed tomove between different enhancer positions
over the course of evolution (presumably a consequence of motif
decay and de novo formation), and despite position independence
being a key assumption of the billboard model, the influence of
the position and sequence context on amotif’s contribution to en-
hancer function is not understood. These knowledge gaps restrict
our understanding of the functional and evolutionary flexibility of
enhancer sequences and how many sequence variants, as they
might arise by DNAmutagenesis, might lead to similar or different
enhancer activities.

Here, we investigated how many defined DNA sequences
might functionally replace thewild-type sequence in variousmotif
and control positions by exhaustively testing all possible 8-nucle-
otide-long sequence variants at these positions in two enhancers
in Drosophila melanogaster S2 cells. In addition, we systematically
compared the contribution of prominent TF motif types to en-
hancer activity when placed into different positions along an en-
hancer to assess how their intrinsic strengths are modulated by
the sequence context in bothDrosophila as well as human enhanc-
ers. Overall, these complementary approaches emphasize the flex-
ibility of enhancer sequences and how the activity of TF motifs is
modulated by the enhancer sequence context, namely the flank-
ing sequence, the presence and diversity of other motif types,
and the distance between motifs.

Results

STARR-seq comprehensively assesses the activity of enhancer
variants revealing constrained enhancer sequence flexibility
To systematically test what sequences function in a certain en-
hancer position, we used an approach inspired by studies that test-
ed the activity of fully randomized regulatory sequences (Farley
et al. 2015; de Boer et al. 2020; Vaishnav et al. 2022; Galupa
et al. 2023) or the local fitness landscape of the green fluorescent
protein (GFP; Sarkisyan et al. 2016; Somermeyer et al. 2022). We
generated a comprehensive library of sequence variants by replac-
ing a specific 8-nt stretch in an enhancer with randomized nucle-
otides (N8) and assessed the enhancer activity of each variant by
UMI-STARR-seq inDrosophila S2 cells (Fig. 1A; seeMethods; Arnold
et al. 2013;Neumayr et al. 2019). Enhancer activity as usedhere is a
quantitativemeasure and is defined as the increase in transcription
of the reporter by a given enhancer candidate.We tested the power
of this approach in the position of a GATATFmotif within the ced-
6 developmental enhancer (ced-6 position 241 nt, or pos241) that
is required for its activity. We recovered all possible 8-nt variants
(65,536) in the input library and obtained reliable enhancer activ-
ity measurements for each variant (Supplemental Fig. S1). This
showed that the vast majority of all variants drive low activity
levels, whereas only 374 (<1%) achieve similar activity to wild
type (±10%) and 600 (1%) drive even higher activity, that is, con-
stitute valid solutions at this motif position (Fig. 1B).

Although only a few hundred sequences functioned at this
position, these were highly diverse (Fig. 1C,D) and included not
only different variants of the GATA motif (Fig. 1B—in blue, and

1E,F) but also other TF motifs, such as SREBP and AP-1 (Fig. 1E,F;
Supplemental Figs. S2A,B, S3A). The different levels of importance
of motifs were independent of their orientation, with the possible
exception of SREBP and STAT for which differences are apparent
yet not significant and cannot be assessed reliably because of a
small number of instances (Supplemental Fig. S3A). Most of the
600 variants stronger than wild type (94%) created TF motifs over-
represented in S2 developmental enhancers (PWM P-value 1×10−4;
Fig. 1F; Supplemental Fig. S3B), showing that there is flexibility in
the DNA sequences but also in the motif types they encode.
However, different TFmotifs rescued enhancer activity to different
levels (Fig. 1E; Supplemental Fig. S3A). Whereas AP-1 and SREBP
achieved similar activity to the wild-type GATA motif, twist and
ETS had lower activity at this enhancer position, despite being gen-
erally associated with strong enhancer activity in S2 cells (de
Almeida et al. 2022). Therefore, the observed sequence flexibility
is constrained to some TF motifs. In addition, even within each
TF motif not all specific sequence variants functioned similarly,
as apparent in the large differences between their activities (Fig.
1E). We observed a positive association between the activities of
motif sequence variants and the TFmotif affinities formostmotifs,
yet the correlation was typically modest, indicating that the PWM
motif score does not explain the widely different activities (only
SREBP has a PCC>0.6 and twist and ETS even have PCCs<0.1;
Supplemental Fig. S3C).

We also observed TFmotif types that had neutral or repressive
functions at the tested 8-nt position: The Dref motif, previously
shown to only be important for housekeeping enhancers (Zabidi
et al. 2015; de Almeida et al. 2022), had no activity in this ced-6
developmental enhancer, whereas the Ttk motif created the
most inactive 8-nt variants consistent with Ttk’s function as a re-
pressor (Fig. 1E; Supplemental Fig. S2C; Xiong and Montell
1993). These results show that this approach can comprehensively
assess the activity of all sequence variants in a specific region of the
enhancer and identify activating, neutral, and repressive sequenc-
es. Moreover, our findings indicate that developmental enhancers
exhibit constrained flexibility, in that many variants, but still a
strongly restricted number, can function at a given enhancer posi-
tion. This constrained sequence flexibility applies not only to indi-
vidual DNA sequences but also TF motif types in that several
different motif types work, but not many or all.

Activity of random variants in seven specific positions of two
different enhancers
To evaluate if the same principles and the same specific solutions
apply at different enhancer positions, we selected three additional
positions of the ced-6 enhancer and three positions of a strong en-
hancer in the ZnT63C locus (Fig. 2A). To probe enhancer sequence
flexibility at important motif positions and nonimportant control
positions, we used the deep learning model DeepSTARR (Fig. 2A;
de Almeida et al. 2022) and previous experimental enhancermuta-
tions (Supplemental Fig. S4F) to choose positions that should (ced-
6 pos110, pos241; ZnT63C pos142, pos180, pos210) or should not
(ced-6 pos182, pos230) be important for enhancer activity. We
generated exhaustive libraries of all 8-nt sequence variants for
each position and performed UMI-STARR-seq on the combined li-
braries of each enhancer (Supplemental Fig. S4A–E; see Methods).
As observed for the GATA position in Figure 1 (pos241), only a re-
stricted set of variants achieved wild-type activity at a second im-
portant GATA motif position in the same enhancer (pos110) or
at the important motif positions in the ZnT63C enhancer (Fig.
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2B), confirming that important positions in enhancers show con-
strained flexibility. This contrasted with the nonimportant posi-
tions (pos182 and pos230 of the ced-6 enhancer) where most
sequence variants were active at or near wild-type levels (Fig. 2B).
This is expected, as these positions are predicted to not contain se-
quences associated with enhancer activity and are therefore less
constrained. Thus, the importance of an enhancer position reflects
its constraint, with nonimportant positions not being constrained
(while they can still be modulated positively or negatively).

The most active sequences at each enhancer position were
highly diverse and exhibited distinct nucleotide preferences (Sup-
plemental Figs. S5–S7). For example, two positions located either

in the ced-6 (pos110) or the ZnT63C (pos210) enhancer showed
distinct preferences among the strongest 100 variants, which pref-
erentially match to an SREBP (GTCAC[flanked by GTC]) or an ETS
motif (CCGGA[A]), respectively (Supplemental Fig. S5B). These re-
sults show that different enhancer positions require different mo-
tif types and thus are under different constraints.

Different TF motif types are active at different enhancer positions
Comparing the activity of the 8-nt sequence variants between the
enhancer positions (scaled to the average activity of variants to be
comparable across positions; see Methods) revealed that they
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Figure 1. STARR-seq comprehensively assesses the activity of randomvariants in a specific enhancer position. (A) Schematics of STARR-seq for the analysis
of random variants in an enhancer position: (1) A comprehensive library of sequence variants was generated by replacing the 8-nt stretch overlapping a
GATA TF motif in the strong ced-6 enhancer with all possible 65,536 randomized nucleotides; (2) the enhancer activity of each variant was measured by
STARR-seq in Drosophila S2 cells; (3) expected outcomes include the wild-type sequence (wt, blue), inactive variants (gray), and variants that recover the
wild-type activity (green) or are even stronger (purple). (B) Most sequence variants exhibit low activity levels. The distribution of enhancer activity for each
of the 62,012 enhancer variants with confident activity is shown. The wild-type (wt, red) sequence, the strongest GATA variant in each orientation (blue),
and the strongest sequence variant are highlighted, together with the number of variants that achieve similar activity to wild type (±10%) or drive even
higher activity. (C) Strong sequence variants are highly diverse. Logos with nucleotide frequency of the most-active variants in STARR-seq (1, 2, 5, 10, 50,
100, 1000, and all) and flanking nucleotides. Please note that because variants are aligned this will smear out motifs that occur at different positions. Motif
finding with HOMER for these variants is shown in Supplemental Figure S2. (D) Sum of information content within the most-active 8-mers in STARR-seq
(red) compared with the same after randomly sorting the variants (gray), considering different number of top sequences. (E) Distribution of enhancer ac-
tivity for all 62,012 enhancer variants (left) or variants creating each TF motif (right). The activity of the wild-type sequence (wt, red dot and dashed line) or
median of all variants (gray dashed line) are shown. The string of each TF motif used for the motif matching and the number of variants matching to each
motif are described in the x-axis in the format “motif string (TFmotif name, number of variants).” (F) Number of variants among the 600 stronger than wild
type that match to motifs enriched in S2 developmental enhancers (PWM P-value cutoff 1×10−4).
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indeed functioned differently at different positions (Pearson corre-
lation coefficients [PCCs] below 0.4 between positions; Fig. 2C;
Supplemental Fig. S8A–C). Further consolidating the 8-nt into 6-
nt variants to reduce the impact of the surrounding sequence of
each position (averaged activity across the flanking nucleotides)
showed higher correlations but still strong differences between po-
sitions (Supplemental Fig. S8A,B,D). The top variants and solu-

tions of each position differed substantially, with each position
revealing specific sequenceswith particularly high activity,match-
ing to known TF motifs (Fig. 2C). For example, an ETS motif vari-
ant was among the strongest sequences at ced-6 pos110 but not at
pos241, aGATAvariantwas very active at ced-6pos182but inactive
at pos230, and an SREBP variant was active in all positions of the
ZnT63C enhancer except at pos210 (Fig. 2B).
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Figure 2. Sequence constraints at different enhancer positions. (A) DeepSTARR-predicted nucleotide contribution scores for the ced-6 (top) and ZnT63C
(bottom) selected enhancer sequences. Selected 8-nt motif positions and nonimportant control positions are highlighted in yellow with the respective nu-
merical position, TF motif identity, and different colors. (B) Distribution of enhancer activity for all enhancer variants detected in each enhancer position.
The activity of the wild-type sequence of each enhancer (wt, red dashed line) or of inactive sequences (gray dashed line) are highlighted, together with the
activity of example sequence variants that create different TF motifs (ETS, GATA, and SREBP; dots and connected lines). Number of variants tested in each
position are shownon the x-axis, whereas the number of variants with higher activity thanwild type is shownon the top (gray, ∗). (C) Heatmap of Z-scores of
log2 enhancer activity of 21,235 variants across all seven enhancer positions. Only variants assessed in all positions and active (Z-score > 1) in at least one are
shown. Variants were clustered using hierarchical clustering and their activity is colored in shades of red (activating) and blue (repressing). (D) Heatmap of
average Z-scores of log2 enhancer activity of variants creating each TFmotif type (y-axis) across all enhancer positions (x-axis; sorted as inC ).Motif activity is
colored in shades of red (activating) and blue (repressing). (E) Distribution of Z-scores of log2 enhancer activity for variants creating each of four TF motifs
(AP-1, GATA, ETS, ttk) in two selected enhancer positions (ced-6 pos241 and ZnT63C pos180).
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We next compared the activity of motifs between the seven
positions of the two different enhancers, by consolidating the ac-
tivity of all 8-nt variants (±4 nt flanks) creating eachmotif (Fig. 2D,
E; Supplemental Fig. S9; see Methods). For each position the wild-
type sequence as well as different variants of that motif were
among the top variants.Whereas the repressor Ttkmotif repressed
in all positions and showed little specificity (similar to other
known and novel repressor motifs; Supplemental Fig. S10), the ac-
tivatormotifs showed distinct profiles, such asmotifs that are glob-
ally active in all positions (AP-1), motifs with low activity in all
tested positions (STAT, CREB, and Trl), and motifs with highly
context-dependent activities (GATA, twist, ETS, and SREBP) (Fig.
2D,E). For example, GATA was active at the ced-6 pos110 but not
at the ZnT63C pos180 position, whereas ETS motifs showed the
opposite profile with the strongest activity at ZnT63C pos180
(Fig. 2E). For GATA motifs, we observed strong activity in all posi-
tions except on ced-6 pos230 and ZnT63C pos180, which are posi-
tioned close to anotherGATAmotif (Fig. 2A). This observation is in
line with the previously observed negative interaction of GATA/
GATA motif pairs at short distances (de Almeida et al. 2022) and
suggests that the observed different activities of TF motifs at differ-
ent enhancer positions depend on their interaction with other TFs
and the sequence context.

In summary, testing thousands of sequence variants in differ-
ent enhancer positions revealed that enhancer sequences display
constrained flexibility, in that only a specific but still diverse set
of sequences and TF motifs can function at a given position.
However, these constraints and solutions differed between en-
hancer positions, with different TF motifs active at different posi-
tions, suggesting that their activity is modulated by the sequence
context.

Systematic motif pasting shows that motifs work differently
at different enhancer positions
To systematically test if and how the enhancer sequence context
modulates the function of TF motifs, we selected eight TF motifs
that showed distinct position-dependent preferences (GATA, Trl,
SREBP, AP-1, Atf2, twist, Stat92E, and ETS) and pasted their opti-
mal sequences into 763 positions in a total of 496 developmental
enhancers (Fig. 3A; see Methods). These positions were selected to
be TFmotifs important for the activity of the respective enhancers,
as assessed by motif mutagenesis, allowing the reliable measure-
ment of the increase in enhancer activity after pasting each TFmo-
tif (here quantified as the log2 fold-change activity over the motif-
mutated enhancer). UMI-STARR-seq experiments with these de-
signed libraries produced highly reproducible and quantitative en-
hancer activity measurements (replicates PCC between 0.94 and
0.98; Supplemental Fig. S11). Disrupting the selected enhancer po-
sitions by shuffling the wild-type sequences substantially reduced
the activity of the respective wild-type enhancers by an average of
more than sixfold, and pasting the different TF motifs in these
same positions rescued enhancer activity to different levels
(Supplemental Fig. S12A). Because we pasted the same optimal se-
quence for each TFmotif into all positions, the differences in activ-
ity can only be explained by their respective sequence context; the
differences between TF motifs are also directly comparable,
because we pasted them in the same set of positions.

Across all positions TF motifs had different median activities,
which we interpret as different intrinsic strengths, with SREBP, ETS,
and AP-1 being the strongest motifs and Trl the weakest (Fig. 3B;
Supplemental Fig. S12A). However, enhancer positions had large

effects on the motif activities that differed more than 100-fold
for the samemotif (Fig. 3B). For example, pasting a GATAmotif ac-
tivated enhancer activity more than 20-fold for 33 positions but
not at all for 72 different positions. This position dependency
was particularly strong for Trl, Stat92E, and GATA motifs, and
weaker for AP-1, SREBP, and ETS (Supplemental Fig. S12B), which
all had higher intrinsic strengths. Additionally, each TF motif
showed differential activity across enhancer positions and activat-
ed in a unique set of positions. For example (Fig. 3C), GATAmotifs
activated enhancer1-position168 but not enh2-pos68, whereas
ETS showed the opposite effect, and both motifs activated enh3-
pos135. The different TF motifs showed different activity profiles
across all positions, as revealed by global comparisons and hierar-
chical clustering (Fig. 3D; Supplemental Fig. S13). These results
highlight the complexity of enhancer syntax and the difficulty
of predicting and interpreting individual sequencemanipulations.

The distinct preferences observed between pastedmotifs were
largely independent of the identity of the replaced wild-typemotif
across all positions, as revealed by the weak interaction scores be-
tween thewild type and the pastedmotif identity in amultivariate
linear regression analysis of allmotif-pasting experiments (<1%ex-
plained variance, Supplemental Fig. S14). In contrast, the pasted
motif identity (irrespective of the identity of the replaced motif)
explains the most (23%) whereas 65% of variance remains unex-
plained and is likely due to surrounding enhancer sequence fea-
tures affecting the motifs’ activities. Thus, systematic pasting of
TF motifs across hundreds of enhancer contexts shows that motifs
have different intrinsic strengths but work differently at different
enhancers and positions, suggesting that the enhancer sequence
context constrains the activity of TF motifs.

TF motifs have different intrinsic strengths that are modulated
by the enhancer sequence context
The observed differential activities of motifs in different enhancer
positions (Fig. 3D) suggest that the enhancer sequence context
modulates the function of TF motifs. We found no significant dif-
ferences when comparing the motif activity between pairs of posi-
tions in the same enhancer or in different enhancers, suggesting
that the local context immediately surrounding the motif is as im-
portant as enhancer identity (Supplemental Fig. S15).

More globally, the sequence context for amotif can be related
to its position within the enhancer, the motif flanking sequence,
and the presence and distance to other motifs. To characterize
the importance of these features, we tested if they contribute to
the performance of predicting enhancer activity following the
pasting of a motif at different enhancer positions. We first built a
baseline random forest model that only includes the importance
of the wild-typemotif and the identity of the wild-type and pasted
motifs as features, thereby not taking any sequence context fea-
tures into account. Thismodel obtained a PCCof 0.59 in thewhole
data set using tenfold cross-validation and showed that the pasted
motif and thewild-typemotif importance are strong determinants
for enhancer activity (Supplemental Fig. S16A). Training a second
random forest model that also includes context features such as
themotif position relative to the enhancer center, themotif flank-
ing sequence (defined as ±5 bp around the optimal motif as in
de Almeida et al. [2022]), and the presence and distance to other
TF motifs, improved this performance to a PCC of 0.69
(Supplemental Fig. S16B). This shows that the enhancer sequence
context, particularly the closest flanking nucleotides as well as the
presence of other motifs at specific distances (e.g., GATA or ETS),
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has an impact on the activity of TF motifs (Supplemental Fig.
S16B).

To better characterize the importance of these sequence rules
for each TF motif separately, we generated interpretable linear
models based on these rules to predict the motif activities across
all positions (Fig. 4A). These models were able to predict the motif
pasting results, with PCCs to experimentally assessed log2 fold
changes between 0.39 (ETS) and 0.64 (Stat92E) (Fig. 4A;
Supplemental Fig. S17). Themotif flanks and the presence of addi-
tional motifs explained on average 16.7% and 6.7% of the motif
activities variance, respectively, whereas themotif position within
the enhancer had lower importance (0.4%).

The TFmotif type-specific models revealed how the sequence
context rules differ between TF motif types, explaining the motif-
specific enhancer position preferences. For example, GATA activity
was strongly dependent on the flanking nucleotides and was
modulated by the presence of a second GATA at close distance
(negative interaction) or ETS motifs (positive interaction) (Fig.

4B; Supplemental Fig. S18A). We saw different associations for
ETS activity, as expected by the different GATA and ETS activity
profiles across all positions (Fig. 3E). ETS activity was only mildly
influenced by the flanking nucleotides but strongly by neighbor-
ing motifs: it was stronger close to GATA motifs and weaker in en-
hancers with another ETSmotif (Fig. 4C; Supplemental Fig. S18B).
These sequence features, such as the negativeGATA/GATA and the
positive ETS/GATA interactions at close distances, were observed
previously via computational models of wild-type S2 enhancer se-
quences (de Almeida et al. 2022).

In addition, the DeepSTARR-predicted importance of each
nucleotide when pasting different TF motifs into the same posi-
tion revealed their interaction with the sequence context (Fig.
4D,E; Supplemental Fig. S19): GATA but not ETS activated the
Chr 3L enhancer in a position with additional distal GATA mo-
tifs, while ETS but not GATA activated the Chr X enhancer in a
position with a GATA motif at close distance, and both activated
the Chr 2L enhancer that contains multiple surrounding twist
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Figure 3. TF motifs work differently at different enhancer positions. (A) Schematics of systematic motif pasting in different enhancer positions. Eight TF
motifs that showed distinct position-dependent preferences were selected and their optimal sequence was pasted in 763 positions distributed among 496
enhancers, representing different contexts. The enhancer activity of each variant was measured by STARR-seq in Drosophila S2 cells to quantify the activity
ofmotifs at the different positions. (B) Distribution of enhancer activity changes (log2 FC tomutated sequence) across all enhancer positions for each pasted
TF motif. (C) Bar plots with activity (log2) of variants of three different enhancers with a mutated sequence (gray), a GATA (blue), or a ETS (brown) motif
pasted at the same position. (D) Heatmap of enhancer activity changes (log2 FC to mutated sequence) after pasting each of the eight selected TF motifs in
721 enhancer positions (positions with data for at least six motifs). TF motifs and positions were clustered using hierarchical clustering and the activity is
colored in shades of red (activating) and blue (repressing); missing values are colored in gray. (E) GATA and ETSmotifs work differently at different enhancer
positions. Comparison between enhancer activity changes (log2 FC to mutated sequence) after pasting GATA (x-axis) or ETS (y-axis) across all enhancer
positions. Positions with stronger activity of GATA or ETS (≥twofold with respect to the other motif) are colored in blue and brown, respectively. Enhancer
positions shown in C are highlighted. PCC: Pearson correlation coefficient.
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Figure 4. Characterization of preferred syntax features of each TFmotif. (A) Motif syntax rules modulate TFmotif function. For each TFmotif type (rows),
a linear model was built to predict its activity across all enhancer positions, using as covariates the number of instances, the wild-type TF motif importance
and identity, and sequence context features such as the position within the enhancer, the flanking nucleotides, and the presence at close or distal distances
to all other TF motifs. The PCC between predicted and observed motif activities is shown with the green color scale on the left. The heatmap shows the
contribution of each feature (columns) for each model, colored by the FDR-corrected P-value (red or blue scale depending on positive or negative asso-
ciation, respectively). (B,C) Syntax features associated with GATA (B) or ETS (C) activity. Left: bar plot showing the variance explained by the different types
of features (color legend) for each of the linear models.Middle and right: enhancer activity changes (log2 FC to a mutated sequence) after pasting each TF
motif in positions with no additional GATA (middle) or ETS (right) in the enhancer, or with additional GATA or ETS at close (≤25 bp) or distal (>25 bp) dis-
tances. Number of instances are shown. (D) DeepSTARR-predicted importance scores for pasting amutant sequence (gray), GATA (blue), or ETS (brown) in
a specific position (Chr X: 9,742,091–9,742,339, pos205). Motif sequences pasted are shown. (E) Bar plots with measured enhancer activity (log2) of var-
iants from D.
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motifs, all consistent with these motifs’ respective distance pref-
erences (de Almeida et al. 2022). Together these results demon-
strate how the sequence context (e.g., the flanking sequence,
and the presence and diversity of other motif types) modulates
the function of TF motifs, constraining enhancer sequence
flexibility.

Enhancer sequence context modulates the function of human
TF motifs
To test whether TF motifs also work differently in different en-
hancer sequence contexts in other species, we performed the sys-
tematic motif pasting experiment in human HCT116 cells for
eight previously characterized human TF motifs (P53, AP-1, ETS,
CREB1, MAF, EGR1, E2F1 and MECP2; see Methods; de Almeida
et al. 2022). Pasting of the motifs into 1354 important positions
in 753 different HCT116 enhancers revealed that humanTFmotifs
also have different intrinsic strengths and work differently in dif-
ferent enhancers and positions (Fig. 5A; Supplemental Figs. S20,
S21). P53 was the strongest motif and the only one that showed
globally strong activity across all enhancer positions, suggesting
little dependence on the enhancer context, as has been suggested
before (Verfaillie et al. 2016). AP-1, the second strongestmotif, was
strongly dependent on the enhancer positions, with activities
rangingmore than 50-fold across enhancer contexts. This position
dependence was also observed for the other motifs, even though
their overall activity was lower (Fig. 5A).

TF motifs preferred different enhancer contexts, with four
groups of motifs showing characteristically different preferences:
(1 – P53) strong activity in all positions; (2 – CREB1, AP-1, MAF,
EGR1) and (3 – ETS) highly context-dependent activities; (4 –

MECP2, E2F1) only active in few and highly specific enhancer po-
sitions (Fig. 5B,C; Supplemental Fig. S22). These distinct preferenc-
es were independent of the identity of the replaced motif (Fig. 5D;
Supplemental Fig. S23) but correlated with sequence context fea-
tures. Similar to Drosophila TF motifs, motif context features such
as motif flanks and the presence and distance to other TF motifs
were important to predict the activities of human motifs across
the different enhancer positions (Supplemental Fig. S24). TF-spe-
cific linear models based on such syntax features were able to pre-
dict the motif activities across all positions (PCCs between 0.46
and 0.51; Supplemental Fig. S25) and revealed the context prefer-
ences of each TF motif (Fig. 5E).

All motif activities were influenced by the flanking nucleo-
tides, which explained on average 8.2% of themotif activities’ var-
iance, whereas the presence of additionalmotifs and their distance
explained 8.5% (Fig. 5E; Supplemental Figs. S25, S26). As expected
by theweak context specificity of P53 (group 1, Fig. 5A), its activity
was independent of the presence and distance to other TF motifs
(Fig. 5E; Supplemental Fig. S26A). All the other motifs preferred
contexts with an additional AP-1 instance (Fig. 5E). The AP-1motif
itself, as well as MAF, CREB1, and EGR1 (group 2), all preferred po-
sitions close to an ETS motif, concordant with previous studies
showing direct protein–protein interactions between ETS and oth-
er TFs (Li et al. 2000; Burda et al. 2010), whereas the ETS motif
(group 3) had a negative interaction with a second close ETS motif
(Fig. 5E), as also observed in Drosophila enhancers (Fig. 4A). These
findings are also concordant with themotif syntax rules found in a
previous study (de Almeida et al. 2022). Altogether, this establishes
that TF motifs require specific enhancer sequence contexts in spe-
cies as divergent as fly and human, suggesting that this is a general
principle of regulatory enhancer sequences.

Discussion

In this study, we used two complementary strategies to explore the
flexibility of enhancers with regard to nucleotide and motif iden-
tity at specific enhancer positions as well as the position depen-
dence of motif activity. Even though median enhancer activity
drops significantlywhen randomizing an 8-nt stretch at important
positions, many sequence variants, including variants of the wild-
type motif but also other TF motifs, can achieve strong enhancer
activity. The diverse solutions at each position show that enhanc-
ers exhibit some degree of flexibility. However, as only a few hun-
dred out of the >65,000 tested sequences work, the flexibility at
any given position is constrained. Similarly, systematically pasting
different motifs into hundreds of enhancer positions revealed that
motif activity is strongly modulated by the enhancer sequence
context. Therefore, constrained sequence flexibility and the mod-
ulation of motif function by the sequence context seem to be key
features of enhancers.

The observation that both Drosophila and human TF motifs
require specific enhancer sequence contexts suggests that this is
a general principle of enhancers. Even though motifs possess
some intrinsic strengths, their potential to activate transcription
strongly depends on the sequence context and follows certain syn-
tax rules, including motif flanks, combinations, and distances.
Although our study cannot assess themechanistic causes for these
rules, they might be related to local DNA shape (Dror et al. 2015;
Mathelier et al. 2016; Samee et al. 2019) or tomore general enhanc-
er DNA properties such as DNA bending. Our observation that
homotypic interactions of certain motifs at close distances (e.g.,
GATA or ETS) are negatively associated with enhancer activity is
consistent with repressive homotypic interactions between pluri-
potency TFs found by thermodynamic modeling (Fiore and
Cohen 2016); the mechanisms, however, are still unclear.
Intermotif distances can impact the synergy between TFs at the
level of DNAbinding or after binding, such as cofactor recruitment
and activation,which could explain bothpositive andnegative TF-
TF interactions (Reiter et al. 2017). Although these syntax rules
seem to be stricter for some TF motifs (e.g., GATA) and more re-
laxed for others (e.g., P53), our results show that motifs are not
simply independent modules. Instead, they interact with all en-
hancer features in a highly cooperative manner, which canmodu-
late motif activity by more than 100-fold. This is an important
result that supports a model where enhancer activity is encoded
through a complex interdependence between motifs and context,
rather than motifs acting independently and additively. Whereas
tissue- or cell type–specificity can already be predicted by motif
presence-absence patterns alone (Kvon et al. 2014; Janssens et al.
2022), the encoding of different enhancer strengths seems to
depend on more complex cis-regulatory syntax rules (Jindal and
Farley 2021; de Almeida et al. 2022). The functional implications
of mutations in TFmotifs or elsewhere within enhancer sequences
can therefore only be assessed in the context of these syntax
features.

Themotif syntax rules describedhere agreewell with the ones
learned by DeepSTARR trained on genome-wide enhancer activity
data (de Almeida et al. 2022) and the BPNet model trained on en-
dogenous TF binding and cooperativity (Avsec et al. 2021), sug-
gesting that these rules are important in wild-type enhancer
sequences. As an ectopic reporter assay STARR-seq measures the
potential of sequences to act as enhancers, even if the sequences
might be repressed endogenously at the chromatin level (Arnold
et al. 2013; Muerdter et al. 2018), making it a powerful tool to
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Figure 5. Human TF motifs require specific enhancer sequence contexts. (A) Distribution of enhancer activity changes (log2 FC to mutated sequence)
across all enhancer positions for each pasted TF motif. (B) Heatmap of enhancer activity changes (log2 FC to mutated sequence) after pasting each of the
eight selected human TF motifs in 1052 enhancer positions (positions with data for at least six motifs). TF motifs and positions were clustered using hier-
archical clustering and the activity is colored in shades of red (activating) and blue (repressing); missing values are colored in gray. (C) Human TF motifs
work differently at different enhancer positions. Comparison between enhancer activity changes (log2 FC to mutated sequence) after pasting AP-1 (x-axis)
and P53 (top) or ETS (bottom) (y-axis), across all enhancer positions. Positions with stronger activity of eachmotif (≥twofold in respect to the other motif in
the scatter plot) are colored (P53: green, AP-1: purple, ETS: brown). PCC: Pearson correlation coefficient. (D) TF motif activity in function of wild-type and
pasted motif identity. Left: Bar plot showing the amount of variance explained by the wild-type motif importance and identity, the pasted motif identity,
and the interaction between the wild-type and pasted motifs, using a linear model fit on all motif pasting results. Right: Scatter plots of predicted (linear
model) versus observed enhancer activity changes (log2 FC to mutated sequence) across all motif pasting experiments. Color reflects point density. (E)
Motif syntax rules modulate the function of human TF motifs. For each TF motif type (rows), we built a linear model to predict their activity across all en-
hancer positions, using as covariates the number of instances, the wild-type TF motif importance and identity, and sequence context features such as the
position within the enhancer, the flanking nucleotides, and the presence at close or distal distances to all other TF motifs. The PCC between predicted and
observed motif activities is shown with the green color scale on the left. The heatmap shows the contribution of each feature (columns) for each model,
colored by the FDR-corrected P-value (red or blue scale depending on positive or negative association, respectively).
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uncover the sequence determinants for enhancer activity. It will be
interesting to explore the sequence rules and mechanisms by
which chromatin modulates endogenous enhancer activities and
gene expression using complementary methods (Catarino and
Stark 2018). In addition, DeepSTARR also predicted with good ac-
curacy the activity of all randomized sequence variants and of mo-
tifs pasted in different enhancer contexts (Supplemental Figs. S27,
S28). This supports the validity of computational models such as
DeepSTARR and their use in in-silico-like experiments (e.g., motif
pasting experiments with a larger set of TF motifs across many
more genomic positions) to improve our understanding of the reg-
ulatory information encoded in enhancer sequences and the im-
pact of mutations.

Our study shows that enhancer sequences are flexible
enough for enhancer strength to be achieved by a small yet
diverse set of sequence variants, and that mutations in informa-
tion-poor positions have little impact on the enhancer activity
in a single cell type. This flexibility allows many different se-
quences to achieve similar enhancer activities in a single cell
type, which might be an important prerequisite for the evolution
of developmental enhancers that operate under many additional
constraints, for example, regarding the precise spatiotemporal
control of enhancer activities. As the activity in a given cell can
be achieved by many solutions, the specific solutions that fulfill
additional requirements can be explored during evolution.
Indeed, previous studies that have analyzed expression changes
of enhancer mutations across different cell types in vivo have ob-
served that the cell type–specific expression patterns of enhanc-
ers can change upon (minimal) sequence perturbations (Farley
et al. 2015; Fuqua et al. 2020; Galupa et al. 2023). The fact that
enhancer strength in any given cell type and enhancer specificity
across cell types and developmental time are subject to different
yet overlapping sequence constraints highlights the complexity
of the regulatory code. We expect that the combination of quan-
titative enhancer-sequence-to-function models in individual cell
types and qualitative predictions of enhancer activities across cell
types will provide unprecedented progress in our understanding
of enhancer biology and our ability to read and write enhancer
sequences.

Methods

UMI-STARR-seq library cloning
Libraries of Drosophila enhancer variants with 8-nt randomized
sequences were generated using a PCR approach with degenerate
oligonucleotides. Forward primers (Supplemental Table S1) were
designed to anneal directly downstream of the enhancer position
of interest followed by 8 degenerate bp (creating 65,536 variants)
and another 20 bp complementary stretch. Reverse primers were
complementary to the 20 bp 5′ of the degenerate stretch. The
STARR-seq vector containing the wild-type enhancer of interest
(ced-6 or ZnT63C) was used as a template for the PCR. The PCR
was run across the whole STARR-seq plasmid, followed by DpnI
digestion and a Gibson reaction that recircularizes the plasmid.
Drosophila and human oligo libraries were amplified (for primers,
see Supplemental Table S1) and cloned intoDrosophila STARR-seq
vectors containing the DSCP core promoter and into the human
STARR-seq plasmid with the ORI in place of the core promoter
(Muerdter et al. 2018), respectively. All libraries were grown in
2l LB-Amp (final ampicillin concentration 100 µg/mL). All librar-
ies were purified with Qiagen Plasmid Plus Giga Kit (cat. no.
12991).

Cell culture, transfection, and UMI-STARR-seq
Drosophila S2 and human HCT116 cells were cultured as described
previously (Arnold et al. 2013; Muerdter et al. 2018). Cells were
electroporated using the MaxCyte-STX system at a density of 50
×106 cells per 100 µL and 5 µg of DNA using the “Optimization
1” protocol (S2) and at a density of 1×107 cells per 100 µL and
20 µg of DNA using the preset “HCT116” program (HCT116), re-
spectively. We transfected 400×106 S2 cells total per replicate
with 20 μg of the input library for Drosophila and 80×106

HCT116 cells total per replicate with 160 µg of the input library
for human cells. UMI-STARR-seqwas performed as described previ-
ously (Arnold et al. 2013; Muerdter et al. 2018; Neumayr et al.
2019). Further experimental details can be found in the
Supplemental Methods.

Random variant UMI-STARR-seq data analysis
RNA and DNA input reads (paired-end 150 bp) were mapped to
dedicated Bowtie indices using Bowtie v.1.2.2 (Langmead et al.
2009). Because the N8 variants were all positioned in the last 150
nt of each enhancer, we allowed for flexible mapping in the begin-
ning of the fragments to increase the number of mapped reads
while keeping high sensitivity for the different enhancer variants.
Specifically, we trimmed the forward reads to 36 bp and mapped
them to the indices allowing for three mismatches; the full 150-
bp-long reverse reads were mapped with nomismatches, to identi-
fy all sequence variants; paired-end readswith the correct position,
length, and strand were kept. For paired-end DNA and RNA reads
that mapped to the same variant, we collapsed those that have
identical UMIs (10 bp, allowing one mismatch) to ensure the
counting of unique molecules (Supplemental Table S2).

We excluded oligos with less than five reads in any of the in-
put replicates and less than one read in any of the RNA replicates.
The enhancer activity of each sequence in each screen was calcu-
lated as the log2 fold-change over input, using all replicates, with
DESeq2 (Love et al. 2014).

Oligo library UMI-STARR-seq data analysis
As described previously (de Almeida et al. 2022), RNA andDNA in-
put reads were mapped to a reference containing the 249-bp-long
sequences from the fragments present in the Drosophila (dm3) or
human (hg19) libraries using Bowtie v.1.2.2 (Langmead et al.
2009). We used these reference genomes to be able to integrate
our results with older in-house and published data sets and made
sure this choice does not affect the quantifications of enhancer ac-
tivity. Mapping reads with the correct length, strand, and with no
mismatcheswere kept. BothDNA and RNA readswere collapsed by
UMIs (10 bp) as above (Supplemental Table S2).

We excluded oligoswith less than 10 reads in any of the input
replicates and added one read pseudocount to oligos with zero
RNA counts. The enhancer activity of each oligo in each screen
was calculated as the log2 fold-change over input, using all repli-
cates, with DESeq2 (Love et al. 2014).

Random variant libraries of Drosophila enhancers and UMI-
STARR-seq
Two strong S2 developmental enhancers with different TF motif
compositions were selected to test a diversity of random 8-nt var-
iants in different positions: ced-6 (Chr 2R: 5,326,628–5,326,876)
and ZnT63C (Chr 3L: 3,310,914–3,311,162) enhancers. We select-
ed five positions important for the activity of the two enhancers
(ced-6 pos110 and pos241; ZnT63C pos142, pos180, pos210) and
two nonimportant positions of the ced-6 enhancer (pos182 and
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pos230) and replaced each 8-nt stretch of the enhancer with ran-
domized nucleotides (N8), creating 65,535 enhancer variants in
addition to the wild-type sequence per position. For each enhanc-
er, we pooled the libraries of the different positions and combined
them with an oligo library of thousands of wild-type enhancers
and negative sequences (de Almeida et al. 2022) for normalization.
UMI-STARR-seq using the ced-6 or ZnT63C pooled libraries was
performed and analyzed as described above (Supplemental Table
S3). We performed two independent replicates per enhancer
pooled library screen (Pearson correlation coefficient (PCC) =
0.85–0.91). To be able to compare the activity of variants and mo-
tifs between enhancer positions, we next scaled the enhancer ac-
tivity of all variants per position (Z-scores). This allowed us to
measure the change in activity of a given variant over the average
of all variants, correcting for the importance of the different en-
hancer positions tested.

Diversity of top active variants and de novo motif discovery
The most-active 8-nt variants of each screen (1, 2, 5, 10, 50, 100,
and 1000) were retrieved and consolidated into position probabil-
ity matrices based on the nucleotide frequencies at each position.
Logos were visualized using the ggseqlogo function from R package
ggseqlogo (v.0.1; https://CRAN.R-project.org/package=ggseqlogo).
The top 100 and 1000 or bottom 1000 variants (8 nt ± 4 nt flanks)
of each screen were used for de novo motif discovery analyses us-
ing HOMER, taking all detected variants of the respective screen
as background. HOMER (v4.10.4; Heinz et al. 2010) was run with
the findMotifs.pl command and the arguments fly -len 6,7,8.

Activity of TF motifs created by sequence variants
To robustly assess the activity of a given TF motif, we retrieved the
activity of all 16-nt variants (8 nt±4 nt flanks) creating each motif
by string matching. For a more systematic comparison across all
TF motif types, we matched variants to the optimal string from
each TF motif PWM model in a motif database (de Almeida et al.
2022). The average activity across variantswas defined as themotifs’
intrinsic strength. To find how many active variants are explained
by the creation of knownmotifs enriched in S2 developmental en-
hancers, we performed PWM-based motif scanning of those candi-
date motifs onto variants (8 nt±4 nt flanks). We used the
matchMotifs function from R package motifmatchr (v.1.4.0; ge-
nome= “BSgenome.Dmelanogaster.UCSC.dm3”, bg=“genome”
[https://bioconductor.org/packages/release/bioc/html/motifmatchr
.html]) with P-value cutoffs 1×10−4 and 1×10−5.

Comparison of random variants activity across enhancer positions
We compared the activity of all 8-nt random variants across en-
hancer positions using their Z-score scaled activity (Supplemental
Table S3). We calculated pairwise PCCs between the different li-
braries, performedhierarchical clustering (“complete”method) us-
ing the correlation values as similarities, and displayed heatmaps
using the pheatmap R package (v.1.0.12; https://CRAN.R-project
.org/package=pheatmap). To reduce the impact of the flanking se-
quence of each position when comparing the activity of variants
between them, we repeated the same after consolidating the 8-nt
into shorter variants by taking the centered sequence and averag-
ing the activity across variants with different flanking nucleotides.

Drosophila and human TF motif mutagenesis oligo library synthesis
and UMI-STARR-seq
For the Drosophila library, we selected 1172 motif positions
(among 728 enhancers) that are required for the activity of the re-

spective enhancers and designed sequences of enhancer variants
where we pasted a mutant sequence or the optimal sequence of
eight TF motifs (GATA, AP-1, twist, Trl, ETS, SREBP, Stat92E, and
Atf2; one at a time; sequences in Supplemental Table S4) in each
of these positions. For the human library, we selected 1456 motif
positions important for the activity of 808 enhancers and designed
sequences of enhancer variants where we pasted a mutant se-
quence or the optimal sequence of the same eight TF motifs (AP-
1, ETS, E2F1, EGR1, MAF, MECP2, CREB1, P53; one at a time; se-
quences in Supplemental Table S4) in each of these positions.
Each of the Drosophila and human libraries was synthesized and
pooled with a previous library containing the respective wild-
type enhancer sequences (de Almeida et al. 2022) to be screened
together (Supplemental Tables S5, S6). All details can be found
in the Supplemental Methods. The resulting 300-mer oligonucleo-
tideDrosophila and human libraries were synthesized by Twist Bio-
science. UMI-STARR-seq using these oligo libraries was performed
and analyzed as described above (Supplemental Tables S5, S6). We
performed three independent replicates forDrosophila (correlation
PCC=0.95–0.98) and human (PCC=0.96–0.98) screens.

Quantification of motif activity at different enhancer positions
We used our enhancer activity measures of the wild-type and mu-
tated sequences to stringently select important enhancer positions
for further analyses: positionswheremutation reduced the activity
by at least twofold (Supplemental Figs. S12A, S21A). These resulted
in 763 important positions distributed among 496 Drosophila en-
hancers and 1354 positions distributed among 753 human en-
hancers. Variability of activity of each motif across enhancer
positions was quantified using the coefficient of variation (ratio
of the standard deviation to the mean; Supplemental Fig. S12B).
We compared the activity of motifs across enhancer positions by
pairwise PCCs and performed hierarchical clustering (“complete”
method) using the correlation values as similarities. Heatmaps
were displayed using the pheatmap R package (v.1.0.12; https://
CRAN.R-project.org/package=pheatmap).

Prediction of motif activities using motif syntax features
We extracted the following syntax features per tested enhancer po-
sition: the position relative to the enhancer center (center: −/+25
bp, flanks: −/+25:75 bp, boundaries: −/+75:125 bp), the position
flanking nucleotides (5 bp on each side), and the presence and dis-
tance to other TF motifs (close: ≤25 bp; distal: > 25 bp; between
motif centers). Instances of each TFmotif typeweremapped across
all enhancers using their annotated PWM models (Supplemental
Table S3) and thematchMotifs function fromRpackagemotifmatchr
(v.1.4.0; https://bioconductor.org/packages/release/bioc/html/
motifmatchr.html) with the following parameters: genome=
“BSgenome.Dmelanogaster.UCSC.dm3”, p.cutoff = 5e-04, bg =
“genome”.

We used a 10-fold cross-validation scheme to train random
forest models to predict Drosophila or human motif pasting activi-
ties (log2 fold-change tomutant) using as features the wild-type TF
motif identity and importance (log2 fold-change activity between
wild-type and motif-mutant sequence) and the pasted motif iden-
tity, together or not with the syntax features described above. All
models were built using the caret R package (v. 6.0–80; https://
CRAN.R-project.org/package=caret) and feature importance was
calculated using its varImp function.

In addition, we trained amultiple linear regressionmodel per
TF motif type to predict its activity across different enhancer posi-
tions using as covariates the wild-type TF motif identity and im-
portance together with the syntax features described above. All
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models were built using the caret R package (v. 6.0–80; https://
CRAN.R-project.org/package=caret) and 10-fold cross-validation.
The linear model coefficients and respective FDR-corrected P-val-
ues were used as metrics of importance for each feature, using
the red or blue scale depending onpositive or negative associations
(Figs. 4A, 5E). We calculated the percentage of variance explained
by each covariate in the linear models built for each TF motif
with one-way ANOVAs. Further details can be found in the
Supplemental Methods.

DeepSTARR nucleotide contribution scores and predictions
of enhancer sequence changes
Nucleotide contribution scores for wild-type enhancers or enhanc-
er variants were calculated using DeepSTARR as described previ-
ously (de Almeida et al. 2022) and visualized using the ggseqlogo
function from the R package ggseqlogo (v.0.1; https://CRAN.R-
project.org/package=ggseqlogo). DeepSTARR was also used to pre-
dict the enhancer activity of N8 variants in enhancers or the log2
fold-change enhancer activity of motif pasting sequences.

Statistics and data visualization
All statistical calculations and graphical displays have been per-
formed in R statistical computing environment (v.3.5.1; R Core
Team 2020) and using the R package ggplot2 (Wickham 2016).
In all box plots, the central line denotes the median, the box en-
compasses 25th to 75th percentile (interquartile range), and the
whiskers extend to 1.5× interquartile range.

Data access
All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE211659 or Zenodo (https://zenodo.org/record/7010528#
.ZAeEay1h2v4). Code used to process the UMI-STARR-seq data as
well as to reproduce all analyses, results, and figures has been
submitted to GitHub (https://github.com/bernardo-de-almeida/
Variant_STARRseq) and is available as Supplemental Code.
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Supplemental	Figures	

Supplemental	Fig	S1.	STARR-seq	comprehensively	assesses	the	activity	of	random	

variants	in	a	specific	region	of	the	enhancer.	

A) Pairwise	comparisons	of	normalized	STARR-seq	input	(left)	and	RNA	(middle)	UMI	read
counts	or	enhancer	activity	(RNA/input;	right)	between	two	independent	biological	replicates
across	all	sequence	variants	tested	in	the	GATA	position	(pos241)	in	the	ced-6	enhancer.	Color
reflects	point	density.	The	PCC	is	denoted	for	each	comparison.	Note	the	overrepresentation
of	the	wild-type	sequence	both	in	the	input	and	RNA	libraries	(top	right	corner),	since	it	was
used	 as	 the	 template	 for	 the	 PCR	 cloning	 (see	 Methods).	B)	 Representation	 of	 sequence
variants	 in	STARR-seq	input	 library.	Frequency	of	variants	covered	by	different	number	of
UMI	read	counts.	Number	of	 sequences	matching	 to	wild	 type	and	 the	number	of	variants
recovered	are	shown,	together	with	the	mean	and	median	counts	sequenced	per	variant.

Supplemental	 Fig	 S2.	 De	 novo	 motif	 discovery	 with	 Homer	 of	 top	 and	 bottom	
variants	at	the	GATA	position	(pos241)	in	the	ced-6	enhancer.	

TF	motifs	found	de	novo	(Homer)	within	the	top	100	(A),	top	1,000	(B)	or	bottom	1,000	(C)	
variants.	Motifs	logo,	statistics	and	predicted	TF	are	shown.	
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Supplemental	Fig	S3.	Activity	of	variants	creating	different	TF	motif	 types	at	 the	

GATA	position	(pos241)	in	the	ced-6	enhancer.	

A)	Distribution	of	enhancer	activity	for	all	62,012	enhancer	variants	(left)	or	variants	creating
each	TF	motif	 in	 either	 orientation	 (right;	 positive	 and	 negative	 orientation	 are	 shown	 in
grey).	The	motif	activities	are	independent	of	their	orientation	(Wilcoxon	rank	sum	test	p-
value	>	0.05).	The	activity	of	the	wild-type	sequence	(wt,	red	dot	and	dashed	line)	or	median
of	all	variants	(grey	dashed	line)	are	highlighted.	The	string	of	each	TF	motif	used	for	the	motif
matching	and	the	number	of	variants	matching	to	each	motif	are	described	in	the	x-axis	in	the
format	“motif	string	(TF	motif	name,	number	of	variants)”.	B)	Number	of	variants	among	the
600	stronger	than	wild	type	that	match	to	motifs	enriched	in	S2	developmental	enhancers,
using	two	different	PWM	p-value	cutoffs	(1e-05	and	1e-04).	C)	Pearson	correlation	coefficient
between	 variant	 activity	 and	 TF	 motif	 PWM	 scores.	 Note	 that	 for	 repressors,	 as	 ttk,	 the
correlation	is	expected	to	be	negative.
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Supplemental	Fig	S4.	STARR-seq	screens	with	random	variants	in	seven	positions	

of	two	different	enhancers.	

A,	B)	Pairwise	comparisons	of	normalized	STARR-seq	input	(left)	and	RNA	(middle)	UMI	read	
counts	or	enhancer	activity	(RNA/input;	right)	between	two	independent	biological	replicates	
across	all	sequence	variants	tested	in	positions	of	the	ced-6	(A)	or	ZnT63C	(B)	enhancer.	Color	
reflects	point	density.	The	PCC	is	denoted	for	each	comparison.	Note	the	overrepresentation	
of	the	wild-type	sequence	both	in	the	input	and	RNA	libraries	(top	right	corner),	since	it	was	
used	as	the	template	for	the	PCR	cloning	(see	Methods).	C)	Comparison	of	enhancer	activity	
between	the	two	different	enhancer	pooled	libraries	for	the	common	oligos	(a	library	of	wild-
type	enhancer	or	negative	sequences;	see	Methods).	The	PCC	is	shown.	The	respective	wild-
type	enhancers	are	highlighted.	Given	the	underestimation	of	the	activity	of	the	ZnT63C	wild-
type	 sequence	 in	 its	pooled	 library,	we	used	as	 reference	wildt-ype	activity	 the	activity	of	
another	enhancer	with	similar	activity	that	was	conserved	in	both	libraries	(see	Methods).	D,	
E) Representation	of	sequence	variants	from	each	individual	library	(a	library	of	wild-type
enhancer	and	negative	sequences,	grey,	or	libraries	with	random	variants	in	each	enhancer
position,	different	colors)	in	STARR-seq	input	and	RNA	pooled	libraries	of	the	ced-6	(D)	or
ZnT63C	(E)	enhancer.	The	mean	counts	sequenced	per	variant	is	shown	per	pooled	library
with	a	dashed	line.	F)	Importance	of	each	motif	position	selected	in	the	ced-6	(Left)	or	ZnT63C
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(Right)	enhancer	as	 judged	by	the	 impact	of	 their	 individual	mutation	 in	enhancer	activity	
(log2	fold-change).	Data	retrieved	from	de	Almeida	et	al.,	2022	(de	Almeida	et	al.	2022).	

Supplemental	 Fig	 S5.	 Top	 active	 variants	 at	 each	 enhancer	 position	 are	 highly	

diverse.	

A) DeepSTARR-predicted	 nucleotide	 contribution	 scores	 for	 the	 ced-6	 (left)	 and	 ZnT63C
(right)	selected	enhancer	sequences.	Selected	8nt	motif	positions	and	non-important	control
positions	are	highlighted	in	yellow	with	the	respective	numerical	position,	TF	motif	identity
and	different	colors.	B)	Strong	sequence	variants	are	highly	diverse.	Logos	with	nucleotide
frequency	of	the	most-active	variants	in	STARR-seq	(1,	2,	5,	10,	50,	100,	1,000	and	all)	at	each
enhancer	position	(colored	as	in	(A)).	C)	Sum	of	information	content	within	the	most-active
8-mers	in	STARR-seq	(colored	as	in	(A))	compared	with	the	same	after	randomly	sorting	the
variants	(grey)	for	each	enhancer	position,	considering	different	number	of	top	sequences.
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Supplemental	Fig	S6.	Characterization	of	active	variants.	

A) Log2	 fold-change	enhancer	activity	over	 the	wild-type	activity	 for	all	 enhancer	variants
grouped	by	their	edit	distance	(hamming	distance)	to	the	wild-type	sequence,	per	enhancer
position.	B)	Number	of	variants	stronger	than	wild	type	that	match	to	motifs	enriched	in	S2
developmental	enhancers	is	shown	(PWM	p-value	cutoff	1e-04),	per	enhancer	position.
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Supplemental	Fig	S7.	De	novo	motif	discovery	with	Homer	of	the	top	1000	variants	
at	the	different	enhancer	positions.	

TF	motifs	 found	de	novo	 (Homer)	within	the	top	1,000	variants	at	each	enhancer	position.	
Motifs	logo,	statistics	and	predicted	TF	are	shown.	
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Supplemental	Fig	S8.	Comparison	of	all	random	variants	across	enhancer	positions.	

A) Hierarchical	 clustering	 of	 all	 enhancer	 positions	 based	 on	 PCC	 of	 variant	 enhancer
activities	 in	 each	 position,	 when	 considering	 different	 lengths	 of	 sequence	 variants	 (see
Methods).	B)	Distribution	of	PCCs	 from	 (A)	 in	 function	of	 the	 length	of	 sequence	 variants
considered.	C,D)	Comparison	of	z-scores	of	log2	enhancer	activity	of	all	8nt	(C)	or	6nt	(D;	see
Methods)	variants	between	enhancer	positions	(insets	show	activity	for	replicates	(Act.	Rep)
1	versus	2	for	each	position).	Color	reflects	the	enhancer	position	and	point	density.	PCCs	and
number	of	sequence	variants	are	shown.	Variants	matching	to	GATA,	twist	and	ETS	motifs	are
highlighted	in	(D).
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Supplemental	Fig	S9.	Activity	of	TF	motif	types	at	different	enhancer	positions.	

A) Heatmap	of	average	z-scores	of	log2	enhancer	activity	of	variants	creating	each	TF	motif
type	across	all	seven	enhancer	positions.	Only	motif	types	active	(average	z-score	>	1)	in	at
least	one	position	are	shown.	Motifs	and	enhancer	positions	were	clustered	using	hierarchical
clustering	and	 their	 activity	 is	 colored	 in	 shades	of	 red	 (activating)	and	blue	 (repressing).
Motifs	enriched	in	S2	cell	enhancers	are	labelled	in	green.	Motif	types	used	in	the	motif	pasting
experiment	 are	 highlighted.	B)	 Activity	 of	 different	 TF	 motifs	 at	 each	 enhancer	 position.
Distribution	of	z-scores	of	log2	enhancer	activity	for	variants	creating	each	TF	motifs	in	ced-6
and	ZnT63C	enhancer	positions.
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Supplemental	Fig	S10.	STARR-seq	identifies	known	and	novel	motifs	that	repress	

enhancer	activity.	

A) DeepSTARR-predicted	 nucleotide	 contribution	 scores	 for	 the	 ced-6	 (left)	 and	 ZnT63C
(right)	selected	enhancer	sequences.	Selected	8nt	motif	positions	and	non-important	control
positions	are	highlighted	in	yellow	with	the	respective	numerical	position,	TF	motif	identity
and	 different	 colors.	 B)	 Activity	 of	 different	 repressor	 motifs	 at	 each	 enhancer	 position.
Distribution	 of	 enhancer	 activity	 for	 all	 enhancer	 variants	 (left)	 or	 variants	 creating	 each
repressor	TF	motif	(right),	per	enhancer	position.	The	activity	of	the	wild-type	sequence	(wt,
red)	or	median	of	all	variants	(grey	dashed	line)	are	shown.	The	string	of	each	TF	motif	used
for	the	motif	matching	and	the	number	of	variants	matching	to	each	motif	are	described	in	the
x-axis:	in	the	format	“motif	string	(TF	motif	name,	number	of	variants)”.
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Supplemental	Fig	S11.	Systematic	motif	pasting	screens	in	Drosophila	enhancers.	

Pairwise	comparisons	of	normalized	STARR-seq	input	(A)	and	RNA	(B)	UMI	read	counts	or	
enhancer	activity	(RNA/input)	(C)	between	three	independent	biological	replicates	across	all	
oligos	tested.	Color	reflects	point	density.	The	PCC	is	denoted	for	each	comparison.	
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Supplemental	 Fig	 S12.	 Enhancer	 activity	 of	 different	 sequences	 in	 Drosophila	

enhancers.	

A) Activity	of	pasted	motifs	at	different	enhancer	positions.	Distribution	of	enhancer	activity
changes	 (log2)	 of	 all	 wild-type	 enhancers	 used	 and	 their	 variants	 with	 either	 mutant
sequences	or	different	TF	motifs	pasted.	Few	instances	show	negative	values:	these	are	not
dependent	 on	 the	 specific	 mutant	 sequence	 but	 rather	 correspond	 to	 the	 creation	 of	 a
repressor	motif	at	 the	 flanks	of	 the	pasted	motif	and	 the	backbone	enhancer.	B)	Bar	plots
showing	the	coefficient	of	variation	(ratio	of	the	standard	deviation	to	the	mean)	of	the	activity
of	each	TF	motif	across	all	enhancer	positions.	C)	Activity	of	pasting	motifs	(y-axis,	log2	fold-
change	activity	over	basal	motif-mutated	enhancer	activity)	in	function	of	the	basal	activity
(x-axis,	activity	of	motif-mutated	enhancer).	The	PCC	is	denoted	for	each	motif.

131



Reiter	&	de	Almeida,	et	al	

Supplemental	Fig	S13.	Motifs	work	differently	at	different	enhancer	positions.	

A) Hierarchical	clustering	of	all	TF	motifs	based	on	PCC	of	motif	activities	across	all	enhancer
positions.	B)	Motifs	work	differently	at	different	enhancer	positions.	Comparison	between
enhancer	 activity	 changes	 (log2	 FC	 to	mutated	 sequence)	 after	pasting	different	TF	motifs
across	 all	 enhancer	 positions.	 Positions	with	 stronger	 activity	 of	 each	motif	 (>=	 2-fold	 in
respect	to	the	other	motif)	are	colored	with	the	respective	colors.	PCC:	Pearson	correlation
coefficient.	C,D)	DeepSTARR-predicted	nucleotide	contribution	scores	for	two	enhancers	and
respective	 positions	 (highlighted	 in	 yellow,	 with	 wild-type	motif	 types	 described	 on	 top)
included	in	the	screen.	For	each	position,	the	enhancer	activity	changes	(log2	FC	to	mutated
sequence)	after	pasting	each	TF	motif	are	shown	in	dot	plots	(bottom).
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Supplemental	Fig	S14.	TF	motif	activity	in	function	of	wild-type	motif	identity.	

A) Distribution	 of	 enhancer	 activity	 changes	 (log2	 FC	 to	 mutated	 sequence)	 across	 all
enhancer	positions	for	each	pasted	TF	motif,	grouped	by	the	identity	of	the	wild-type	motif.
B)	Left:	Bar	plot	showing	the	amount	of	variance	explained	by	the	wild-type	motif	importance
and	identity,	the	pasted	motif	identity	and	the	interaction	between	the	wild	type	and	pasted
motifs,	using	a	linear	model	fit	on	all	motif	pasting	results.	Right:	Scatter	plots	of	predicted
(linear	model)	vs.	observed	enhancer	activity	changes	(log2	FC	to	mutated	sequence)	across
all	motif	pasting	experiments.	Color	reflects	point	density.	PCC	is	shown.

Supplemental	Fig	S15.	Motif	activity	in	different	positions	in	the	same	or	different	

enhancers.	

A) Schematics	of	comparison	of	motif	activity	between	instances	within	the	same	enhancer	or
in	different	enhancers.	B)	Absolute	log2	fold-change	in	enhancer	activity	between	instances
within	the	same	enhancer	(red)	or	in	different	enhancers	(blue)	for	each	pasted	TF	motif	type.
n.s.	non-significant	(Wilcoxon	signed	rank	test).
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Supplemental	Fig	S16.	Prediction	of	motif	activities	using	motif	syntax	features	in	

random	forest	model.	

Left:	 Importance	 of	 all	 features	 (A)	 or	 only	 the	 top	 20	 (B)	 included	 in	 the	 random	 forest	
models	with	only	TF	motif	identity	(A)	or	also	with	syntax	features	(B),	sorted	by	importance	
and	colored	by	feature	type.	Right:	Scatter	plots	of	predicted	vs.	observed	enhancer	activity	
changes	(log2	FC	to	mutated	sequence)	across	all	motif	pasting	experiments.	Color	reflects	
point	density.	PCC	is	shown.	
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Supplemental	 Fig	 S17.	 Linear	 models	 with	 syntax	 features	 to	 predict	 motif	

activities.	

A-H)	Left:	Bar	plot	showing	the	variance	explained	by	the	different	types	of	features	(color
legend)	for	each	of	the	linear	models.	Right:	Scatter	plots	of	predicted	vs.	observed	enhancer
activity	changes	(log2	FC	to	mutated	sequence)	for	motif	pasting	experiments	per	TF	motif
type.	Color	reflects	point	density.	PCC	is	shown.
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Supplemental	Fig	S18.	Characterization	of	preferred	syntax	features	of	GATA	and	

ETS	motifs.	

Syntax	 features	 associated	with	 GATA	 (A)	 or	 ETS	 (B)	 activity.	 Left:	 bar	 plot	 showing	 the	
variance	 explained	 by	 the	 different	 types	 of	 features	 (color	 legend)	 for	 each	 of	 the	 linear	
models.	Middle-left:	motif	activity	according	to	the	different	bases	at	each	flanking	position,	
colored	by	nucleotide	identity.	Statistics	from	linear	model	in	Fig	4A:	****P	<	0.0001,	***P		<	
0.001,	 **P	 	<	0.01,	 *P	 	<	0.05	(linear	regression	p-value).	Middle-right	and	right:	enhancer	
activity	changes	(log2	FC	to	mutated	sequence)	after	pasting	each	TF	motif	in	positions	with	
no	additional	GATA	(middle-right)	or	ETS	(right)	in	the	enhancer,	or	with	additional	GATA	or	
ETS	at	close	(<=	25	bp)	or	distal	(>25	bp)	distances.	Number	of	instances	are	shown.	
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Supplemental	Fig	S19.	DeepSTARR-predicted	importance	scores	for	pasting	GATA	

or	ETS	in	the	same	positions.	

A,C,E)	 DeepSTARR-predicted	 nucleotide	 contribution	 scores	 for	 three	 different	 enhancers	
with	a	mutant	sequence,	GATA	or	ETS	pasted	at	the	highlighted	positions.	Motif	sequences	
pasted	are	shown.	B,D,F)	Bar	plots	with	enhancer	activity	(log2)	of	variants	from	(A,C,E).	
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Supplemental	Fig	S20.	Systematic	motif	pasting	screens	in	human	enhancers.	

Pairwise	comparisons	of	normalized	STARR-seq	input	(A)	and	RNA	(B)	UMI	read	counts	or	
enhancer	activity	(RNA/input)	(C)	between	three	independent	biological	replicates	across	all	
oligos	tested.	Color	reflects	point	density.	The	PCC	is	denoted	for	each	comparison.	
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Supplemental	 Fig	 S21.	 Enhancer	 activity	 of	 different	 sequences	 in	 human	

enhancers.	

A) Activity	of	pasted	motifs	at	different	enhancer	positions.	Distribution	of	enhancer	activity
changes	 (log2)	 of	 all	 wild-type	 enhancers	 used	 and	 their	 variants	 with	 either	 mutant
sequences	or	different	TF	motifs	pasted.	Few	instances	show	negative	values:	these	are	not
dependent	 on	 the	 specific	 mutant	 sequence	 but	 rather	 correspond	 to	 the	 creation	 of	 a
repressor	motif	at	the	flanks	of	the	pasted	motif	and	the	backbone	enhancer.	B)	Activity	of
pasting	motifs	(y-axis,	log2	fold-change	activity	over	basal	motif-mutated	enhancer	activity)	in
function	of	the	basal	activity	(x-axis,	activity	of	motif-mutated	enhancer).	The	PCC	is	denoted
for	each	motif.
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Supplemental	 Fig	 S22.	 Human	 TF	motifs	 work	 differently	 at	 different	 enhancer	

positions.	

A) Hierarchical	clustering	of	all	TF	motifs	based	on	PCC	of	motif	activities	across	all	enhancer
positions.	B)	Motifs	work	differently	at	different	enhancer	positions.	Comparison	between
enhancer	 activity	 changes	 (log2	FC	 to	mutated	 sequence)	 after	 pasting	 different	 TF	motifs
across	 all	 enhancer	 positions.	 Positions	with	 stronger	 activity	 of	 each	motif	 (>=	 2-fold	 in
respect	to	the	other	motif)	are	colored	with	the	respective	colors.	PCC:	Pearson	correlation
coefficient.

Supplemental	Fig	S23.	TF	motif	activity	 in	 function	of	wild-type	motif	 identity	 in	

human	enhancers.	

A) Distribution	 of	 enhancer	 activity	 changes	 (log2	 FC	 to	 mutated	 sequence)	 across	 all
enhancer	positions	for	each	pasted	TF	motif,	grouped	by	the	identity	of	the	wild-type	motif.
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B)	Left:	Bar	plot	showing	the	amount	of	variance	explained	by	the	wild-type	motif	importance
and	identity,	the	pasted	motif	identity	and	the	interaction	between	the	wild	type	and	pasted
motifs,	using	a	linear	model	fit	on	all	motif	pasting	results.	Right:	Scatter	plots	of	predicted
(linear	model)	vs.	observed	enhancer	activity	changes	(log2	FC	to	mutated	sequence)	across
all	motif	pasting	experiments.	Color	reflects	point	density.	PCC	is	shown.

Supplemental	Fig	S24.	Prediction	of	motif	activities	using	motif	syntax	features	in	

human	enhancers.	

Left:	 Importance	 of	 all	 features	 (A)	 or	 only	 the	 top	 20	 (B)	 included	 in	 the	 random	 forest	
models	with	only	TF	motif	identity	(A)	or	also	with	syntax	features	(B),	sorted	by	importance	
and	colored	by	feature	type.	Right:	Scatter	plots	of	predicted	vs.	observed	enhancer	activity	
changes	(log2	FC	to	mutated	sequence)	across	all	motif	pasting	experiments.	Color	reflects	
point	density.	PCC	is	shown.	
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Supplemental	Fig	S25.	Linear	models	with	syntax	features	to	predict	motif	activities	

in	human	enhancers.	

A-H)	Left:	Bar	plot	showing	the	variance	explained	by	the	different	types	of	features	(color
legend)	for	each	of	the	linear	models.	Right:	Scatter	plots	of	predicted	vs.	observed	enhancer
activity	changes	(log2	FC	to	mutated	sequence)	for	motif	pasting	experiments	per	TF	motif
type.	Color	reflects	point	density.	PCC	is	shown.
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Supplemental	Fig	S26.	Sequence	features	associated	with	activity	of	P53,	AP-1	and	

ETS	motifs	in	human	enhancers.	

A-C)	Left:	Bar	plot	showing	the	variance	explained	by	the	different	types	of	features	(color
legend)	 for	 each	of	 the	 linear	models.	Middle-left:	Motif	 activity	 according	 to	 the	different
bases	at	each	flanking	position,	colored	by	nucleotide	identity.	Statistics	from	linear	model	in
Fig	5E:	****P	<	0.0001,	***P		<	0.001,	**P		<	0.01,	*P		<	0.05	(linear	regression	p-value).	Middle-
right	and	right:	Enhancer	activity	changes	(log2	FC	to	mutated	sequence)	after	pasting	each
TF	motif	in	positions	with	no	additional	AP-1	(middle-right)	or	ETS	(right)	in	the	enhancer,	or
with	 additional	 AP-1	 or	 ETS	 at	 close	 (<=	 25	 bp)	 or	 distal	 (>25	 bp)	 distances.	 Number	 of
instances	are	shown.
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Supplemental	Fig	S27.	DeepSTARR	predicts	enhancer	sequence	changes.	

Comparison	between	DeepSTARR	predicted	(y-axis)	and	experimentally	measured	(x-axis)	
activity	of	random	sequence	variants	tested	at	the	different	enhancer	positions.	Color	reflects	
the	enhancer	position	and	point	density.	PCCs	are	shown.	

Supplemental	Fig	S28.	DeepSTARR	predicts	activity	of	motifs	in	different	enhancer	

positions.	

A)	Comparison	between	DeepSTARR	predicted	(y-axis)	and	experimentally	measured	(x-axis)
enhancer	activity	changes	(log2	FC	to	mutated	sequence)	for	all	motif	pasting	sequences.	Color
reflects	the	enhancer	position	and	point	density.	PCCs	are	shown.	B)	Same	as	in	(A)	but	per
pasted	TF	motif.
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Supplemental	Tables	

Supplemental	Table	S1.	Primers	used	for	UMI-STARR-seq	library	cloning.	

Primers	used	for	UMI-STARR-seq	library	cloning.	

Supplemental	 Table	 S2.	 Random	 variants	 and	 oligo	 UMI-STARR-seq	 mapping	

statistics.	

Summary	of	total	sequenced	reads,	mapped	reads	and	unique	fragments	(after	collapsing	
by	UMIs)	for	two	random	variants	and	three	oligo	UMI-STARR-seq	screens	in	S2	cells,	and	
three	oligo	UMI-STARR-seq	screens	in	human	HCT-116	cells.	

Supplemental	Table	S3.	Activity	of	random	variants	in	seven	enhancer	positions.	

8nt	and	16nt	forward	and	reverse	sequences,	activities	and	scaled	activities	in	each	of	the	
seven	enhancer	positions.	

Supplemental	 Table	 S4.	 Drosophila	 and	 human	 TF	motif	 sequences	 used	 in	 the	

motif	pasting	experiments.	

Drosophila	and	human	TF	motif	sequences	used	in	the	motif	pasting	experiments.	

Supplemental	 Table	 S5.	 Results	 of	 motif-pasting	 experiment	 in	 Drosophila	 S2	

enhancers.	

Table	with	 all	 oligos	 used	 in	 the	 analysis	 of	Drosophila	 motif	 pasting	with	 their	 DNA	
sequence,	wild-type	motif	 information,	pasted	motif	 information,	activity	of	 respective	
enhancer	variant,	of	the	original	wild	type	or	motif-mutant	enhancer,	and	respective	log2	
fold-changes.	

Supplemental	 Table	 S6.	 Results	 of	motif-pasting	 experiment	 in	 human	HCT-116	

enhancers.	

Table	with	all	oligos	used	in	the	analysis	of	human	motif	pasting	with	their	DNA	sequence,	
wild-type	motif	 information,	 pasted	motif	 information,	 activity	 of	 respective	 enhancer	
variant,	 of	 the	 original	 wild	 type	 or	motif-mutant	 enhancer,	 and	 respective	 log2	 fold-
changes.	
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Supplemental	Methods	

UMI-STARR-seq	

Cell	culture	and	transfection	

Drosophila	 Schneider	 2	 cells	 were	 grown	 in	 Schneider’s	 Drosophila	 Medium	 (Gibco;	

21720-024)	 supplemented	 with	 10%	 heat	 inactivated	 FBS	 (Sigma-Aldrich;	 F7524)	 at	

27°C.	Human	HCT116	cells	were	cultured	in	DMEM	(Gibco;	52100-047)	supplemented	

with	10%	heat	 inactivated	FBS	(Sigma-Aldrich;	F7524)	and	2mM	L-Glutamine	(Sigma-

Aldrich;	G7513)	at	37ºC	in	a	5%	C02-enriched	atmosphere.	Both	cell	types	were	passaged	

every	2-3	days.		

We	used	 the	MaxCyte-STX	electroporation	system	for	all	 library	 transfections.	S2	cells	

were	collected	at	300	x	g	for	5min	and	washed	once	in	1:1	Schneider’s	Drosophila	Medium	

and	MaxCyte	electroporation	buffer	(EPB-1).	50	x	106	cells	were	transfected	with	5µg	of	

DNA	using	the	“Optimization	1”	protocol,	recovered	for	30min	at	27°C	and	resuspended	

in	10mL	S2	Medium	with	10%	FBS.	HCT116	cells	were	collected	at	200	x	g	for	5min	and	

washed	once	in	MaxCyte	electroporation	buffer	(EPB-1).	Cells	were	electroporated	at	a	

density	of	1	x	107	cells	per	100µL	and	20µg	of	DNA	using	the	preset	“HCT116”	program,	

recovered	 for	20min	at	37	°C	and	resuspended	 in	10mL	DMEM	10%	FBS	and	2mM	L-

Glutamine.		

Each	replicate	for	a	STARR-seq	screen	was	transfected	in	2	OC400	cuvettes	with	a	total	of	

400	x	106.	

UMI-STARR-seq	experiments	

Library	cloning	

Random	 8nt	 variant	 libraries	were	 generated	 using	 a	 PCR	 approach	with	 degenerate	

oligonucleotides.	Forward	primers	(primers	see	Supplemental	Table	S1)	were	designed	

to	 anneal	 directly	 downstream	 of	 the	 enhancer	 position	 of	 interested	 followed	 by	 8	

degenerate	 bp	 (creating	 65,536	 variants)	 and	 another	 20	 bp	 complementary	 stretch.	

Reverse	 primers	were	 complementary	 to	 the	 20	 bp	 5’	 of	 the	 degenerate	 stretch.	 The	

STARR-seq	vector	containing	the	wild-type	enhancer	of	interest	(either	ced-6	or	ZnT63C)	

was	 used	 as	 a	 template	 for	 the	 PCR.	 The	 PCR	 was	 run	 across	 the	 whole	 STARR-seq	

plasmid,	followed	by	DpnI	digest	and	a	Gibson	reaction	that	re-circularizes	the	plasmid.	

Libraries	were	grown	in	2l	LB-Amp	(final	ampicillin	concentration	100µg/mL).	Variant	

libraries	of	the	same	enhancer	i.e.	ced-6	enhancer	pos110,	pos182,	pos230,	pos241	and	
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ZnT63C	enhancer	pos142,	pos180,	pos210	were	pooled	to	equimolar	ratio,	together	with	

another	synthetic	oligo	library	containing	wt	enhancer	sequences	and	negative	regions.		

Drosophila	and	human	oligo	libraries	were	synthesized	by	Twist	Bioscience	including	the	

249	bp	enhancer	sequence	and	adaptors	for	library	cloning.	Drosophila	library	fragments	

were	amplified	(primers	see	Supplemental	Table	S1)	and	cloned	into	Drosophila	STARR-

seq	 vectors	 containing	 the	 DSCP	 core-promoters	 using	 Gibson	 cloning	 (New	 England	

BioLabs;	 E2611S).	 The	 oligo	 library	 for	 human	 STARR-seq	 screens	 was	 amplified	

(primers	see	Supplemental	Table	S1)	and	cloned	into	the	human	STARR-seq	plasmid	with	

the	ORI	in	place	of	the	core	promoter	(Muerdter	et	al.	2018).	Libraries	were	grown	in	2l	

LB-Amp	(final	ampicillin	concentration	100µg/mL).		

All	libraries	were	purified	with	Qiagen	Plasmid	Plus	Giga	Kit	(cat.	no.	12991).		

Drosophila	S2	cells	

UMI-STARR-seq	was	performed	as	described	previously	(Arnold	et	al.	2013;	Neumayr	et	

al.	2019).	In	brief,	we	transfected	400	×	10^6	S2	cells	total	per	replicate	with	20	μg	of	the	

input	library	(see	libraries	above).	After	24	hr	incubation,	poly(A)	RNA	was	isolated	and	

processed	as	described	before	(Neumayr	et	al.	2019).	Briefly:	after	reverse	transcription	

and	 second	 strand	 synthesis	 a	 unique	 molecular	 identifier	 (UMI)	 was	 added	 to	 each	

transcript,	allowing	the	counting	of	 individual	RNA	molecules.	This	 is	 followed	by	 two	

nested	PCR	steps,	each	with	primers	that	are	specific	to	the	reporter	transcripts	such	that	

STARR-seq	does	not	detect	endogenous	cellular	RNAs.	

Human	HCT116	cells	

UMI-STARR-seq	was	performed	as	described	previously	(Arnold	et	al.	2013;	Muerdter	et	

al.	2018;	Neumayr	et	al.	2019).	Screening	libraries	were	generated	from	synthesized	oligo	

pools	by	Twist	Bioscience	(see	above).	We	transfected	80	×	10^6	HCT116	cells	total	per	

replicate	with	160	μg	of	the	input	library.	After	6	hr	incubation,	poly(A)	RNA	was	isolated	

and	further	processed	as	described	before	(Neumayr	et	al.	2019).	

Illumina	sequencing	

High-throughput	 sequencing	 was	 performed	 at	 the	 VBCF	 NGS	 facility	 on	 an	 Illumina	

NextSeq	 550	 or	 NovaSeq	 SP	 platform,	 following	 manufacturer’s	 protocol.	 Random	

variants	UMI-STARR-seq	and	Twist-oligo	library	screens	were	sequenced	as	paired-end	

150	cycle	runs,	using	standard	Illumina	i5	indexes	as	well	as	unique	molecular	identifiers	

(UMIs)	 at	 the	 i7	 index.	 Deep	 sequencing	 base-calling	 was	 performed	 with	 CASAVA	

(v.1.9.1).	
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Random	variants	UMI-STARR-seq	data	analysis	

Dedicated	 Bowtie	 indices	 were	 created	 for	 each	 enhancer	 position’s	 N8	 library	 and	

combined	 with	 an	 oligo	 library	 of	 thousands	 of	 wild-type	 enhancers	 and	 negative	

sequences	(de	Almeida	et	al.	2022)	for	normalization,	all	249	bp-long	sequences.	UMI-

STARR-seq	 RNA	 and	 DNA	 input	 reads	 (paired-end	 150	 bp)	 were	 mapped	 to	 these	

dedicated	 Bowtie	 indices	 using	 Bowtie	 v.1.2.2	 (Langmead	 et	 al.	 2009).	 Since	 the	 N8	

variants	were	all	positioned	in	the	last	150	nt	of	each	enhancer,	we	allowed	for	flexible	

mapping	in	the	beginning	of	the	fragments	to	increase	the	number	of	mapped	reads	while	

keeping	high	sensitivity	for	the	different	enhancer	variants.	Specifically,	we	trimmed	the	

forward	reads	to	36	bp	and	mapped	them	to	the	indices	allowing	for	3	mismatches;	the	

full	150	bp-long	reverse	reads	were	mapped	with	no	mismatches,	to	identify	all	sequence	

variants;	paired-end	reads	with	the	correct	position,	length	and	strand	were	kept.	This	

mapping	strategy	was	used	for	both	DNA	and	RNA	reads.	For	paired-end	DNA	and	RNA	

reads	that	mapped	to	the	same	variant,	we	collapsed	those	that	have	identical	UMIs	(10	

bp,	allowing	one	mismatch)	to	ensure	the	counting	of	unique	molecules	(Supplemental	

Table	S2).	

We	excluded	oligos	with	less	than	5	reads	in	any	of	the	input	replicates	and	less	than	1	

read	in	any	of	the	RNA	replicates.	The	enhancer	activity	of	each	sequence	in	each	screen	

was	calculated	as	the	log2	fold-change	over	input,	using	all	replicates,	with	DESeq2	(Love	

et	al.	2014).	We	used	the	counts	of	wild-type	negative	regions	in	each	library	as	scaling	

factors	between	samples.	

Oligo	library	UMI-STARR-seq	data	analysis	

As	described	previously	(de	Almeida	et	al.	2022),	oligo	library	UMI-STARR-seq	RNA	and	

DNA	input	reads	(paired-end	150	bp)	were	mapped	to	a	reference	containing	the	249	bp-

long	sequences	 from	 the	 fragments	present	 in	 the	Drosophila	 (dm3)	or	human	 (hg19)	

libraries	using	Bowtie	v.1.2.2	(Langmead	et	al.	2009).	We	used	these	reference	genomes	

to	be	able	to	integrate	our	results	with	older	in-house	and	published	datasets	and	made	

sure	this	choice	does	not	affect	the	quantifications	of	enhancer	activity.	For	each	library	

we	demultiplexed	reads	by	the	i5	and	i7	indexes	and	oligo	identity.	Mapping	reads	with	

the	correct	length,	strand	and	with	no	mismatches	(to	identify	all	sequence	variants)	were	

kept.	Both	DNA	and	RNA	reads	were	collapsed	by	UMIs	(10	bp)	as	above	(Supplemental	

Table	S2).	

We	excluded	oligos	with	less	than	10	reads	in	any	of	the	input	replicates	and	added	one	

read	pseudocount	to	oligos	with	zero	RNA	counts.	The	enhancer	activity	of	each	oligo	in	
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each	screen	was	calculated	as	the	log2	fold-change	over	input,	using	all	replicates,	with	

DESeq2	 (Love	 et	 al.	 2014).	We	 used	 the	 counts	 of	wild-type	 negative	 regions	 in	 each	

library	as	scaling	factors	between	samples.	

Analyses	of	random	variants	at	different	enhancer	positions	

Independent	motif	mutations	

Two	 strong	 S2	 developmental	 enhancers	 with	 different	 TF	 motif	 compositions	 were	

selected	 to	 test	 a	 diversity	 of	 random	 8	 nt	 variants	 in	 different	 positions:	 ced-6	

(chr2R:5326628-5326876)	 and	 ZnT63C	 (chr3L:3310914-3311162)	 enhancers.	

Experimental	 mutations	 of	 GATA,	 AP-1	 and	 twist	 motifs	 in	 these	 enhancers	 were	

performed	in	a	previous	study	(Supplemental	Fig	S4F;	(de	Almeida	et	al.	2022))	and	used	

here	to	select	important	enhancer	positions.	

Enhancer	random	variants	libraries	and	UMI-STARR-seq	

We	selected	five	positions	important	for	the	activity	of	the	two	enhancers	(ced-6	pos110	

and	pos241;	ZnT63C	pos142,	pos180,	pos210)	and	two	non-important	positions	of	the	

ced-6	enhancer	(pos182	and	pos230).	At	each	position,	we	experimentally	replaced	the	

respective	8nt	stretch	of	the	enhancer	with	randomized	nucleotides	(N8),	creating	65,535	

enhancer	variants	in	addition	to	the	wild-type	sequence	per	position.	For	each	enhancer,	

we	pooled	the	libraries	of	the	different	positions	and	combined	them	with	an	oligo	library	

of	thousands	of	wild-type	enhancers	and	negative	sequences	(de	Almeida	et	al.	2022)	for	

normalization.	UMI-STARR-seq	using	the	ced-6	or	ZnT63C	pooled	libraries	was	performed	

(“UMI-STARR-seq	experiments”)	and	analyzed	(“Random	variants	UMI-STARR-seq	data	

analysis”)	as	described	above	(Supplemental	Table	S3).	We	performed	two	independent	

replicates	 per	 enhancer	 pooled	 library	 screen	 (Pearson	 correlation	 coefficient	

(PCC)=0.85-0.91;	Supplemental	Fig	S4A-E).	

To	be	able	to	compare	the	activity	of	variants	and	motifs	between	enhancer	positions,	we	

next	 scaled	 the	enhancer	activity	of	all	variants	per	position	 (z-scores).	This	allows	 to	

measure	 the	 change	 in	 activity	 of	 a	 given	 variant	 over	 the	 average	 of	 all	 variants,	

correcting	for	the	importance	of	the	different	enhancer	positions	tested.	

Comparison	between	pooled	libraries	using	common	oligos	

The	 respective	 wild-type	 enhancer	 sequence	 was	 overrepresented	 in	 each	 N8	 library	

input	since	it	was	used	as	the	template	for	the	PCR	cloning	(Supplemental	Fig	S4A,B).	We	

compared	the	activities	of	the	ced-6	and	ZnT63C	enhancer	sequences	and	all	other	wild-
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type	enhancers	and	negative	sequences	present	in	both	ced-6	and	ZnT63C	pooled	libraries	

(Supplemental	Fig	S4C).	The	activities	of	the	common	sequences	were	similar	between	

both	screens,	except	for	the	ZnT63C	enhancer	whose	activity	was	underestimated	in	the	

ZnT63C	pooled	 library,	 likely	due	 to	 the	 technical	overrepresentation	 in	 the	 input.	We	

therefore	 selected	 another	 enhancer	 with	 the	 same	 activity	 as	 the	 ZnT63C	 enhancer	

(chrX:9273894-9274142)	to	be	used	as	the	reference	wild-type	activity	for	the	ZnT63C	

enhancer	variants	(Supplemental	Fig	S4C,	2B).	

Diversity	of	top	active	variants	and	de	novo	motif	discovery	

The	most-active	8nt	variants	of	each	screen	(1,	2,	5,	10,	50,	100	and	1,000)	were	retrieved	

and	consolidated	into	position	probability	matrices	based	on	the	nucleotide	frequencies	

at	each	position	(Fig	1C,	S5B).	Logos	were	visualized	using	the	ggseqlogo	function	from	R	

package	 ggseqlogo	 (v.0.1;	 (Omar	 Wagih	 2017)).	 The	 same	 was	 done	 after	 randomly	

sorting	the	variants	of	each	screen	for	comparison.	The	information	content	of	the	top	

sequences	 at	 each	 position	 was	 calculated	 as	 described	 in	

https://bioconductor.org/packages/release/bioc/vignettes/universalmotif/inst/doc/In

troductionToSequenceMotifs.pdf		(Schneider	and	Stephens	1990;	Schneider	et	al.	1986)	

(Fig	1D,	S5C).	

The	top	100	and	1,000	or	bottom	1,000	variants	(8nt	+/-	4nt	flanks)	of	each	screen	were	

used	for	de	novo	motif	discovery	analyses	using	HOMER,	taking	all	detected	variants	of	

the	respective	screen	as	background	(Supplemental	Fig	S2,	S7).	HOMER	(v4.10.4;	(Heinz	

et	al.	2010))	was	run	with	the	findMotifs.pl	command	and	the	arguments	fly	-len	6,7,8.	

Activity	of	TF	motifs	created	by	sequence	variants	

To	robustly	assess	the	activity	of	a	given	TF	motif,	we	retrieved	the	activity	of	all	16nt	

variants	(8nt	+/-	4nt	flanks)	creating	each	motif	by	string-matching.	The	main	motifs	used	

were:	GATA	–	GATAAG,	AP-1	–	TGA.TCA,	SREBP	–	TCACGCGA,	twist	–	CATCTG,	CREB/ATF	

– TCATCA,	 STAT	 –	 TTCC.GGA,	 Trl	 –	 GAGAGA,	 ETS	 –	 CCGGAA,	 Dref	 –	 ATCGAT,	 ttk	 –

AGGATAA,	 ZEB1	 –	 CAGGTG,	 lola	 –	 GGAGTT	 (format:	 TF	 motif	 –	 string).	 For	 a	 more

systematic	 comparison	 across	 all	 TF	motif	 types,	we	matched	 variants	 to	 the	 optimal

string	from	each	TF	motif	PWM	model	 in	a	motif	database	(Supplemental	Fig	S9A;	(de

Almeida	 et	 al.	 2022)).	 The	 average	 activity	 across	 variants	was	 defined	 as	 the	motifs’

intrinsic	strength.	These	activities	were	used	in	Fig	1E,	2E,D,	Supplemental	Fig	S3A,	S6A,

S9,	S10.

To	find	how	many	active	variants	are	explained	by	the	creation	of	known	motifs	enriched

in	 S2	developmental	 enhancers	 (from	 (de	Almeida	 et	 al.	 2022)),	we	performed	PWM-
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based	motif	scanning	of	those	candidate	motifs	onto	variants	(8nt	+/-	4	flanks)	(Fig	1F,	

Supplemental	 Fig	 S3B,	 S6B).	 We	 used	 the	 matchMotifs	 function	 from	 R	 package	

motifmatchr	 (v.1.4.0;	 genome	 =	 “BSgenome.Dmelanogaster.UCSC.dm3”,	 bg="genome"	

(Schep	2021))	with	p-value	cutoffs	1e-04	and	1e-05.	

Activity	of	variants	in	function	of	their	similarity	to	the	wild-type	sequence	

The	 similarity	 of	 each	 sequence	 variant	 to	 the	 wild-type	 sequence	 at	 each	 enhancer	

position	was	measured	 using	 the	 stringdist	 R	 package	 and	hamming	 distance	method	

(Supplemental	Fig	S6A).	

Comparison	of	random	variants	activity	across	enhancer	positions	

We	compared	the	activity	of	all	8nt	random	variants	across	enhancer	positions	using	their	

z-score	 scaled	 activity	 (Fig	 2C,	 Supplemental	 Fig	 S8;	 Supplemental	 Table	 S3).	 We

calculated	 pairwise	 PCCs	 between	 the	 different	 libraries,	 performed	 hierarchical

clustering	(“complete”	method)	using	the	correlation	values	as	similarities,	and	displayed

heatmaps	using	the	pheatmap	R	package	(v.1.0.12;	(Kolde	2019)).	To	reduce	the	impact

of	the	flanking	sequence	of	each	position	when	comparing	the	activity	of	variants	between

them,	we	repeated	the	same	after	consolidating	the	8nt	into	shorter	variants	by	taking	the

centered	 sequence	 and	 averaging	 the	 activity	 across	 variants	 with	 different	 flanking

nucleotides.

Analyses	of	motif	pasting	screens	in	Drosophila	and	human	enhancers	

Oligo	library	design	

Drosophila	motif	pasting	library	

We	 selected	 1,172	 motif	 positions	 (among	 728	 enhancers)	 that	 are	 required	 for	 the	

activity	of	the	respective	enhancers,	assessed	by	experimental	mutagenesis	in	a	previous	

study	(de	Almeida	et	al.	2022).	These	wild-type	positions	cover	different	contexts	and	TF	

motifs:	GATA,	AP-1,	twist,	Trl,	ETS	and	SREBP.	We	next	designed	sequences	of	enhancer	

variants	where	we	pasted	a	mutant	sequence	or	the	optimal	sequence	of	eight	TF	motifs	

(GATA,	 AP-1,	 twist,	 Trl,	 ETS,	 SREBP,	 Stat92E	 and	 Atf2;	 one	 at	 a	 time;	 sequences	 in	

Supplemental	Table	S4)	 in	each	of	 these	positions	(Fig	3A).	To	reduce	the	 influence	of	

flanking	 nucleotides	 and	 different	motif	 affinities	 and	 focus	 on	 differences	 due	 to	 the	

enhancer	 context	we	pasted	an	extended	optimal	 sequence	of	 each	TF	motif	 (as	 in	de	

Almeida	 et	 al.	 (de	 Almeida	 et	 al.	 2022)).	 This	 library	 (Supplemental	 Table	 S5)	 was	
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synthetized	 and	 pooled	 with	 a	 previous	 library	 containing	 the	 wild-type	 enhancer	

sequences	(de	Almeida	et	al.	2022)	to	be	screened	together.	

Human	motif	pasting	library	

Similar	 to	 the	Drosophila	 library,	we	 selected	 1,456	motif	 positions	 important	 for	 the	

activity	of	808	enhancers,	assessed	by	experimental	mutagenesis	in	a	previous	study	(de	

Almeida	et	al.	2022).	These	wild-type	positions	cover	different	contexts	and	TF	motifs:	

AP-1,	 ETS,	 E2F1,	 EGR1,	 MAF,	 MECP2,	 CREB1,	 P53.	 We	 next	 designed	 sequences	 of	

enhancer	variants	where	we	pasted	a	mutant	sequence	or	the	optimal	sequence	of	the	

same	eight	TF	motifs	(AP-1,	ETS,	E2F1,	EGR1,	MAF,	MECP2,	CREB1,	P53;	one	at	a	time;	

sequences	 in	Supplemental	Table	S4)	 in	each	of	 these	positions.	As	 for	 the	Drosophila	

motifs,	we	pasted	an	extended	optimal	sequence	of	each	TF	motif	to	reduce	the	influence	

of	flanking	nucleotides	and	different	motif	affinities	and	focus	on	differences	due	to	the	

enhancer	context.	This	library	(Supplemental	Table	S6)	was	synthetized	and	pooled	with	

a	previous	library	containing	the	wild-type	enhancer	sequences	(de	Almeida	et	al.	2022)	

to	be	screened	together.	

Oligo	library	synthesis	and	UMI-STARR-seq	

The	Drosophila	and	human	enhancers’	oligo	libraries	contained	each	sequences	for	the	

wild-type	enhancers	and	enhancers	with	mutant	variants	or	motifs	pasted	at	the	selected	

positions	 (Supplemental	 Table	 S5	 and	 S6,	 respectively).	 All	 sequences	were	 designed	

using	the	dm3	and	hg19	genome	versions,	respectively.	The	enhancer	sequences	spanned	

249	bp	total,	flanked	by	the	Illumina	i5	(25	bp;	5′-TCCCTACACGACGCTCTTCCGATCT)	

and	 i7	 (26	 bp;	 5′	 AGATCGGAAGAGCACACGTCTGAACT)	 adaptor	 sequences	 upstream	

and	downstream,	respectively,	serving	as	constant	linkers	for	amplification	and	cloning.	

The	resulting	300-mer	oligonucleotide	Drosophila	and	human	libraries	were	synthesized	

by	Twist	Bioscience.	UMI-STARR-seq	using	these	oligo	 libraries	was	performed	(“UMI-

STARR-seq	experiments”)	and	analyzed	(“Oligo	library	UMI-STARR-seq	data	analysis”)	as	

described	 above	 (Supplemental	 Table	 S5	 and	 S6).	 We	 performed	 three	 independent	

replicates	 for	 Drosophila	 (correlation	 PCC=0.95-0.98;	 Supplemental	 Fig	 S11A,B)	 and	

human	(PCC=0.96-0.98;	Supplemental	Fig	S20A,B)	screens.	

Quantification	of	motif	activity	at	different	enhancer	positions	

We	 used	 our	 enhancer	 activity	measures	 of	 the	 wild-type	 and	mutated	 sequences	 to	

stringently	 select	 important	 enhancer	 positions	 for	 further	 analyses:	 positions	where	

mutation	reduced	 the	activity	by	at	 least	2-fold	 (Supplemental	Fig	S12A,	S21A).	These	
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resulted	 in	763	 important	positions	distributed	 among	496	Drosophila	 enhancers	 and	

1,354	positions	distributed	among	753	human	enhancers.	This	was	important	to	select	

positions	where	we	could	reliably	measure	the	increase	in	enhancer	activity	after	pasting	

each	TF	motif	–	quantified	as	the	log2	fold-change	activity	over	the	mutated	enhancer	(Fig	

3B,	 5A).	 Variability	 of	 activity	 of	 each	motif	 across	 enhancer	 positions	was	 quantified	

using	 the	 coefficient	 of	 variation	 (ratio	 of	 the	 standard	 deviation	 to	 the	 mean;	

Supplemental	Fig	S12B).	

We	 compared	 the	 activity	 of	 motifs	 across	 enhancer	 positions	 by	 pairwise	 PCCs	 and	

performed	hierarchical	clustering	(“complete”	method)	using	 the	correlation	values	as	

similarities.	Heatmaps	were	displayed	using	 the	pheatmap	R	package	(v.1.0.12;	(Kolde	

2019))	(Fig	3D,	5B,	Supplemental	Fig	S13A,	S22A).	

Importance	of	the	wild-type	motif	

We	 fitted	motif	 activity	 values	 (log2	 fold-change	enhancer	 activity	 after	motif	pasting)	

with	linear	models	using	the	wild-type	TF	motif	identity	and	importance	(log2	fold-change	

activity	between	wild-type	and	motif-mutant	sequence),	 the	pasted	motif	 identity,	and	

the	 interaction	 between	 the	 wild-type	 and	 pasted	 motifs	 as	 covariates,	 using	 the	 lm	

function	 (v.3.5.1;	 (R	 Core	 Team	 2020)).	 Variance	 explained	 by	 each	 covariate	 was	

calculated	with	 one-way	 ANOVAs	 of	 the	 respective	models	 (Fig	 5D,	 Supplemental	 Fig	

S14B,	S23B).	

Difference	between	pairs	of	positions	in	the	same	or	different	enhancers	

Drosophila	enhancers	with	two	positions	tested	in	our	assay	were	selected	and	the	fold-

change	in	motif	activity	between	pairs	of	positions	in	the	same	enhancer	was	compared	

with	 the	 fold-change	 between	 pairs	 of	 positions	 in	 different	 enhancers	 (matched	 by	

similar	 position-mutant	 baseline	 activities).	 For	 each	 pasted	 TF	 motif,	 significant	

differences	were	assessed	 through	a	 two-sided	Wilcoxon	signed	rank	 test	 followed	by	

FDR	multiple	testing	correction	(Supplemental	Fig	S15).	

Prediction	of	motif	activities	using	motif	syntax	features	

Motif	syntax	features	

To	test	how	motif	activities	depend	on	motif	syntax	features	we	extracted	the	following	

features	 per	 tested	 enhancer	 position:	 the	 position	 relative	 to	 the	 enhancer	 center	

(center:	-/+	25	bp,	flanks:	-/+25:75	bp,	boundaries:	-/+75:125	bp),	the	position	flanking	

nucleotides	(5	bp	on	each	side),	and	the	presence	and	distance	to	other	TF	motifs	(close:	

<=	25	bp;	distal:	>25	bp;	between	motif	centers).	
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Instances	of	each	TF	motif	type	were	mapped	across	all	enhancers	using	their	annotated	

PWM	models	 (Supplemental	 Table	 S3)	 and	 the	matchMotifs	 function	 from	 R	 package	

motifmatchr	 (v.1.4.0;	 (Schep	 2021))	 with	 the	 following	 parameters:	 genome	 =	

“BSgenome.Dmelanogaster.UCSC.dm3”,	 p.cutoff	 =	 5e-04,	 bg="genome".	 Overlapping	

instances	(minimum	50%)	for	the	same	TF	motif	were	collapsed	and	counted	only	once.	

Random	forest	models	

We	 used	 a	 10-fold	 cross-validation	 scheme	 to	 train	 random	 forest	 models	 to	 predict	

Drosophila	 or	 human	 motif	 pasting	 activities	 (log2	 fold-change	 to	 mutant)	 using	 as	

features	 the	 wild-type	 TF	 motif	 identity	 and	 importance	 (log2	 fold-change	 activity	

between	wild-type	and	motif-mutant	sequence)	and	the	pasted	motif	identity,	together	or	

not	with	additional	syntax	 features	(described	above).	All	models	were	built	using	the	

Caret	R	package	(v.	6.0-80;	(Kuhn	2018))	and	feature	importance	was	calculated	using	its	

varImp	function.	Predictions	for	each	held-out	test	sets	were	used	to	compare	with	the	

observed	motif	activities	and	assess	model	performance	(Supplemental	Fig	S16,	S24).	

Linear	model	with	motif	syntax	rules	to	predict	motif	activities	

For	each	TF	motif	type,	we	built	a	multiple	linear	regression	model	to	predict	its	activity	

(log2	fold-change	to	mutant)	across	different	enhancer	positions	using	as	covariates	the	

wild-type	TF	motif	identity	and	importance	(log2	fold-change	activity	between	wild-type	

and	motif-mutant	sequence)	together	with	additional	syntax	features	(described	above).	

All	models	were	built	using	 the	Caret	R	package	 (v.	6.0-80;	 (Kuhn	2018))	and	10-fold	

cross-validation.	Predictions	for	each	held-out	test	sets	were	used	to	compare	with	the	

observed	log2	fold-	changes	and	assess	model	performance	(Supplemental	Fig	S17,	S25).	

The	 linear	 model	 coefficients	 and	 respective	 FDR-corrected	 p-values	 were	 used	 as	

metrics	of	importance	for	each	feature,	using	the	red	or	blue	scale	depending	on	positive	

or	negative	associations	(Fig	4A,	5E).	For	flanking	positions,	we	used	always	red	because	

the	direction	of	the	association	is	not	relevant.	In	addition,	we	calculated	the	percentage	

of	variance	explained	by	each	covariate	in	the	linear	models	built	for	each	TF	motif	with	

one-way	ANOVAs.	For	each	TF	motif,	we	generated	100	different	models,	randomizing	the	

order	of	the	covariates	(since	the	variance	explained	depends	on	the	order	of	covariates	

entered),	quantified	the	percentage	of	variance	explained	of	each	covariate	as	its	sum	of	

squares	divided	by	the	total	sum	of	squares,	and	used	the	average	value	across	all	100	

models	as	the	final	variance	explained	per	covariate	(Supplemental	Fig	S17,	S25).	
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DeepSTARR	predictions	

Nucleotide	contribution	scores	

Nucleotide	contribution	scores	for	wild-type	enhancers	or	enhancer	variants	(Fig	2A,	S5A,	

S11C,D,	 S16)	were	 calculated	 as	 described	 previously	 (de	 Almeida	 et	 al.	 2022),	 using	

DeepExplainer	(the	DeepSHAP	implementation	of	DeepLIFT,	see	refs.	(Shrikumar	et	al.	

2017;	 Lundberg	 and	 Lee	 2017;	 Lundberg	 et	 al.	 2020);	 update	 from	

https://github.com/AvantiShri/shap/blob/master/shap/explainers/deep/deep_tf.py)	

and	 visualized	 using	 the	 ggseqlogo	 function	 from	 R	 package	 ggseqlogo	 (v.0.1;	 (Omar	

Wagih	2017)).	

DeepSTARR	predictions	of	enhancer	sequence	changes	

DeepSTARR	 (https://github.com/bernardo-de-almeida/DeepSTARR,	 (de	Almeida	 et	 al.	

2022))	 was	 used	 to	 predict	 the	 enhancer	 activity	 of	 N8	 variants	 in	 enhancers	

(Supplemental	 Fig	 S27)	 or	 the	 log2	 fold-change	 enhancer	 activity	 of	 motif	 pasting	

sequences	(Supplemental	Fig	S28).	

Statistics	and	data	visualization	

All	 statistical	 calculations	 and	 graphical	 displays	 have	 been	 performed	 in	R	 statistical	

computing	environment	(v.3.5.1;	(R	Core	Team	2020))	and	using	the	R	package	ggplot2	

(Wickham	 2016).	 In	 all	 box	 plots,	 the	 central	 line	 denotes	 the	 median,	 the	 box	

encompasses	25th	to	75th	percentile	(interquartile	range)	and	the	whiskers	extend	to	

1.5×	interquartile	range.	

Data	access	

All	raw	and	processed	sequencing	data	generated	in	this	study	have	been	submitted	to	

the	NCBI	Gene	Expression	Omnibus	 (GEO;	 https://www.ncbi.nlm.nih.gov/geo/)	 under	

accession	number	GSE211659	or	Zenodo	at	https://doi.org/10.5281/zenodo.7010528.	

Code	used	to	process	the	UMI-STARR-seq	data	as	well	as	to	reproduce	all	analyses,	results	

and	 figures	 has	 been	 submitted	 to	 GitHub	 (https://github.com/bernardo-de-

almeida/Variant_STARRseq)	and	is	available	as	Supplemental	Code.	
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Conclusions	and	perspectives	

Identifying	enhancers	and	characterizing	their	sequence	determinants	–	the	cis-regulatory	

code	–	has	remained	one	of	the	greatest	challenges	of	modern	biology.	This	thesis	builds	on	recent	

advances	 in	 high-throughput	 enhancer	 testing	 assays	 and	 deep	 neural	 networks	 and	 further	

developed	them	to	dissect	the	cis-regulatory	information	encoded	in	enhancer	sequences.	This	

included	the	development	of	a	deep	learning	model,	DeepSTARR,	that	predicts	enhancer	activity	

for	two	different	transcriptional	programs	directly	 from	DNA	sequence	and	reveals	 important	

aspects	of	the	enhancer	code	in	Drosophila	S2	cells	(Publication	1).	Additionally,	we	performed	a	

large-scale	enhancer	mutagenesis	screen	to	explore	the	 flexibility	of	enhancer	sequences	with	

regards	to	nucleotide	and	motif	 identity	at	specific	enhancer	positions	as	well	as	the	position-

dependence	of	motif	activity	(Publication	2).	

DeepSTARR	 predicts	 enhancer	 activity	 quantitatively	 for	 unseen	 sequences	 and	 reveals	

different	coding	features	for	the	developmental	and	housekeeping	programs,	including	specific	

TF	 motifs	 and	 higher-order	 syntax	 rules	 that	 we	 validated	 experimentally.	 DeepSTARR	

performed	better	 than	methods	based	on	known	TF	motifs	or	unbiased	k-mer	counts,	both	at	

predicting	 continuous	 enhancer	 activity	 and	 at	 binary	 classification	 of	 enhancer	 sequences,	

supporting	CNNs	as	the	state-of-the-art	methods	for	genomic	prediction	tasks.	Since	these	models	

are	not	based	on	statistical	over-representation,	they	can	discover	both	abundant	features	but	

also	features	that	are	relatively	rare	in	enhancers	but	still	important	for	enhancer	activity,	as	we	

demonstrate	 with	 DeepSTARR.	 Still,	 the	 motif	 syntax	 features	 described	 here	 (TF	 motif	

combinations,	 flanks	 and	 distances)	 likely	 capture	 less	 information	 than	 DeepSTARR:	 linear	

models	using	these	features	showed	lower	performance	on	identifying	enhancers	or	important	

motif	positions,	suggesting	that	DeepSTARR	captures	additional	and	potentially	more	complex	

rules.	In	addition	to	improving	deep-learning	models	such	as	DeepSTARR,	a	key	challenge	will	

therefore	 be	 the	 understanding	 of	 the	 models	 and	 the	 features	 they	 learn	 through	 new	

interpretation	tools.	

The	 enhancer	 syntax	 rules	 learned	 by	 DeepSTARR	 agree	 well	 with	 the	 ones	 identified	

through	the	enhancer	mutagenesis	analyses	and	converged	on	a	key	aspect	of	the	enhancer	code:	

enhancers	display	constrained	sequence	flexibility	where	only	a	specific	but	still	diverse	set	of	TF	

motifs	 can	 function	at	 a	given	position.	This	activity	of	motifs	 at	 specific	positions	 is	 strongly	

modulated	 by	 the	 enhancer	 sequence	 context,	 namely	 the	 flanking	 sequence,	 presence	 and	

diversity	of	other	motif	types,	and	distance	between	motifs,	such	that	motifs	need	to	be	analyzed	

in	 their	 cis-regulatory	 context.	 The	 observation	 that	 both	 Drosophila	 and	 human	 TF	 motifs	

require	specific	enhancer	sequence	contexts	suggests	that	this	is	a	general	principle	of	enhancers.	
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The	understanding	of	 these	motif	 syntax	 constraints	 is	 crucial	 for	 our	 ability	 to	 interpret	 the	

impact	of	disease-related	sequence	variants,	which	typically	affect	individual	motif	instances.	

Finally,	 the	 sequence-rules	 uncovered	 by	 DeepSTARR	 allowed	 the	 design	 of	 synthetic	

enhancers	 with	 desired	 activity	 levels	 de	 novo.	 The	 synthetic	 enhancers	 were	 of	 similar	

complexity	as	endogenous	enhancers	in	the	training	set,	for	example	in	terms	of	TF	motif	number	

and	 diversity.	 The	 observation	 that	 a	 vast	 number	 of	 different	 sequences	 can	 have	 similar	

enhancer	strengths,	as	also	demonstrated	in	the	study	of	enhancer	sequence	variants,	highlights	

the	flexibility	of	regulatory	sequences	and	the	evolutionary	opportunities	that	this	provides.	This	

flexibility	might	be	an	important	pre-requisite	for	the	evolution	of	developmental	enhancers	that	

operate	under	many	additional	 constraints,	 for	example	 regarding	 the	precise	spatiotemporal	

control	of	 enhancer	activities.	Given	 that	 the	activity	 in	a	given	cell	 can	be	achieved	by	many	

solutions,	 the	 specific	 solutions	 that	 fulfill	 additional	 requirements	 can	 be	 explored	 during	

evolution.	 Indeed,	 the	 cell	 type–specific	 expression	 patterns	 of	 enhancers	 can	 change	 upon	

(minimal)	sequence	perturbations90,213,214.	The	fact	that	enhancer	strength	in	a	given	cell	type	and	

enhancer	 specificity	 across	 cell	 types	 and	 developmental	 time	 are	 subject	 to	 different	 yet	

overlapping	sequence	constraints	highlights	the	complexity	of	the	regulatory	code.	

	

Future	perspectives	

Here,	I	will	outline	potential	avenues	for	extending	the	research	presented	in	this	thesis,	

hoping	 to	 inspire	 further	progress	 in	 this	exciting	and	rapidly	evolving	 field	of	computational	

genomics.	

	

Understanding	the	enhancer	code	of	different	cell	types		

We	and	others	have	shown	that	deep	learning	models	such	as	DeepSTARR	can	be	applied	

to	 enhancer	 data	 from	 individual	 cell	 types	 to	 learn	 their	 regulatory	 code	 with	 remarkable	

accuracy.	The	next	step	would	be	to	extend	such	models	to	learn	the	enhancer	code	of	all	main	

tissue	types	and	specific	cell	types	of	an	organism,	taking	advantage	of	the	single-cell	and	tissue	

enhancer	atlases	that	are	being	generated	using	genomic	assays	(mainly	ATAC-seq)38–40,173,215–219	

and	transcriptional	reporter	assays28,33,220–222.	This	should	reveal	the	cell	type-specific	enhancer	

syntax	rules,	including	key	TF	motifs,	their	arrangements,	and	the	corresponding	TFs.	Improved	

interpretation	tools	will	be	required	to	further	understand	the	models	and	the	features	they	learn.	

Comparison	of	 the	 sequence-rules	between	cell	 types	and	 species	will	 build	a	more	 complete	

understanding	of	the	cis-regulatory	code	and	its	evolution.	

	

	 	

158



 

Understanding	how	the	enhancer	code	evolves	during	key	developmental	transitions	

In	addition	to	model	different	tissues	and	developmental	stages	as	independent	states,	in	

the	future	it	will	be	interesting	to	analyze	continuous	trajectories	of	successive	cell	states	and	

build	sequence-based	models	that	predict	enhancer	activity	changes	during	key	developmental	

decisions	and	branch	points.	This	could	be	done	by	modeling	the	differences	(“delta”)	between	

temporally	 successive	 cell	 types	 or	 more	 fine-grained	 mini-clusters	 of	 cells	 ordered	 by	

pseudotemporal	 measures	 of	 individual	 cells,	 such	 as	 pseudotime223,224	 or	 predicted	

developmental	age217.	As	single-cell	technologies	continue	to	advance,	we	will	ultimately	be	able	

to	 train	 sequence-models	 to	 predict	 the	 state	 of	 each	 individual	 cell	 using	 data	 from	 various	

single-cell	assays	such	as	ATAC-seq	and	RNA-seq	(see	the	scBasset	model	for	an	example	in	this	

direction225).	Such	models	will	reveal	the	enhancer	codes	of	different	cells	and	cell	types	and	how	

these	 codes	 differ	 between	 adjacent	 cell	 states	 to	 directionally	 advance	 developmental	

progression	 or	 cell-state	 transitions,	 regarding	 how	 both	 activating	 and	 repressing	 cues	 are	

integrated	 at	 dynamic	 enhancers.	 This	 will	 revolutionize	 our	 understanding	 of	 cellular	

heterogeneity	 and	 of	 how	 enhancer	 sequences	 encode	 the	 complex	 patterns	 of	 temporal	 and	

spatial	 activity	 to	 drive	 the	 evolving	 gene	 expression	 profiles	 along	 cell	 differentiation	

trajectories.	

	

Designing	of	cell	type-specific	enhancers	

Deep	 learning	 sequence-models	 that	 predict	 cell	 type-specific	 enhancers	 will	 not	 only	

advance	our	understanding	of	the	enhancer	cis-regulatory	code	but	enable	the	design	of	synthetic	

enhancers	with	particular	regulatory	properties,	such	as	driving	gene	expression	in	specific	cell	

types226	 or	 in	 response	 to	 signals	 from	 the	 cellular	 environment.	 Such	 tools	 will	 have	 great	

potential	as	specific	markers	for	cell	states	and	cell-state	transitions,	enabling	the	detection	of	

such	transient	events	as	well	as	lineage-tracing	experiments	to	determine	the	cells	of	origin	for	

selected	cell	types	and	tissues.	Furthermore,	the	engineering	of	synthetic	enhancers	with	desired	

properties	 provides	 unanticipated	 opportunities	 for	 controlling	 gene	 expression,	 with	 future	

applications	for	cell	and	gene	therapy.	

	

Building	large	language	foundation	models	for	genomics	

One	promising	 approach	 to	 improve	 the	 prediction	 of	molecular	 phenotypes	 from	DNA	

sequences	is	the	development	of	foundational	models	pre-trained	on	DNA	sequences.	This	type	

of	self-supervised	language	models	has	deeply	transformed	the	artificial	intelligence	field	with	

notable	examples	in	natural	language	processing	(NLP),	including	BERT227	and	GPT-4228,	and	has	

already	been	successfully	applied	 to	 the	prediction	of	protein	 structure	and	 sequence	variant	

effects162,229–232.	Given	the	complex	sequence	features	embedded	in	non-coding	DNA	sequences	
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and	the	increasing	amount	of	data	generated	by	modern	genomics	research,	large	DNA	language	

models	trained	on	unlabeled	genome	sequences	across	diverse	species	and	populations	have	the	

potential	of	developing	general	and	transferable	understandings	of	the	structure,	constraints,	and	

function	 of	 genomic	 sequences233,234.	 Such	 pre-trained	 models	 and	 the	 knowledge	 encoded	

therein	can	be	further	applied	to	downstream	tasks,	in	what	is	called	transfer	learning,	to	solve	

various	 sequence-related	 tasks	 such	 as	 predicting	 enhancers,	 promoters	 and	 ultimate	 gene	

expression.	This	“top-down”	approach	contrasts	with	traditional	“bottom-up”	approach	that	uses	

task-specific	 data	 (models	 such	 as	 DeepSTARR).	 While	 a	 recent	 foundational	 2.5	 billion-

parameter	 model	 trained	 on	 genome	 sequences	 from	 850	 species	 and	 fine-tuned	 on	 the	

DeepSTARR	 training	 data	 did	 not	 surpass	 DeepSTARR	 (625	 thousand	 parameters)	 on	

quantitative	predictions	of	enhancer	activity234,	it	is	still	a	promising	approach	in	its	early	stages.	

As	 pre-training	 and	 fine-tuning	 techniques	 continue	 to	 improve,	 foundational	 models	 might	

become	the	state-of-the-art	for	genomic	predictions.	In	addition,	despite	the	resource-intensive	

nature	 of	 pre-training	 such	 large	 models,	 the	 trained	 models	 can	 be	 utilized	 for	 various	

downstream	tasks	at	a	significantly	reduced	cost.	

	

Prediction	of	gene	expression	from	sequence	

In	 addition	 to	 predict	 enhancers	 and	 the	 activity	 of	 all	 cis-regulatory	 elements	 in	 the	

genome,	the	ultimate	goal	should	be	to	predict	gene	expression	levels	in	different	cell	types	solely	

from	the	DNA	sequence.	Such	models	have	the	potential	to	enhance	our	understanding	of	how	

genes	are	regulated	in	different	cell	types	and	how	their	expression	is	affected	by	the	numerous	

non-coding	genetic	variants	linked	to	human	diseases	and	traits.	

One	way	of	achieving	this	would	be	 to	combine	task-specific	models	 that	predict	all	cis-

regulatory	elements	 (enhancers,	promoters,	 insulators	and	silencers)	 from	 the	DNA	sequence	

(using	genome-wide	ATAC-seq	or	similar	data)	with	models	that	predict	 their	 impact	on	gene	

transcription	(for	example	the	ABC	model48	for	enhancers)	trough	ensemble	learning.	A	related	

approach	more	focused	on	enhancers	would	be	to	first	build	enhancer-driven	gene	regulatory	

networks,	 for	 example	 from	 joint	 profiling	 of	 chromatin	 accessibility	 and	 gene	 expression	 of	

individual	 cells235,	 and	 then	 train	 sequence-based	 models	 to	 predict	 such	 enhancers,	 thus	

generating	a	fully	sequence-based	model	of	those	gene	networks.	The	advantage	of	such	models	

is	that	they	can	be	more	easily	interpretable	since	different	aspects	are	modeled	separately.	

A	different	path	towards	the	same	objective	of	predicting	gene	expression	from	genomic	

sequence	 would	 be	 to	 learn	 the	 sequence-to-expression	 relationship	 in	 an	 end-to-end	 and	

unbiased	 fashion,	 taking	 into	 account	 a	 large	 sequence	 receptive	 field	 that	 can	 account	 for	

interactions	between	 regulatory	 elements.	 This	 has	 been	 attempted	by	 combining	CNNs	with	

dilated	convolutions	(Basenji175)	or	transformer	architectures	(Enformer177)	which	model	gene	
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expression	through	the	encoding	of	regulatory	elements	up	to	20	and	100	kb,	respectively,	away	

from	the	locus	of	interest.	However,	despite	their	improved	performance,	these	models	are	still	

limited	 at	 capturing	 the	 causal	 effects	 of	 distal	 enhancers	 on	 expression	 and	 their	 sequence	

features236.	 One	 promising	 direction	 for	 the	 field	 would	 be	 to	 remove	 the	 earlier	 CNNs	 and	

directly	build	transformer	models	capable	of	handling	lengthy	inputs	of	up	to	200	kb	or	more	that	

could	model	the	DNA	language	directly	(similar	to	the	foundational	models	above).	Although	the	

standard	transformer	architecture	cannot	handle	such	large	inputs	effectively	because	the	self-

attention	 operation	 scales	 quadratically	with	 sequence	 length,	 alternative	 techniques	 such	 as	

sparse	attention237	could	be	explored	to	overcome	the	computational	limitations.	

When	combined	with	the	single-cell	transcriptional	atlases	in	health	and	disease	that	are	

being	generated	(e.g.	by	the	Human	Cell	Atlas	initiative238),	improvements	of	these	deep	learning	

algorithms	will	allow	to	build	sequence-based	predictive	models	 for	all	human	cell	 states	and	

behavior,	 ultimately	 understanding	 how	 our	 genomes	 store	 gene-regulatory	 information	 to	

dictate	gene	expression	and	development.	

	

Predicting	the	effect	of	genetic	variants	

Improved	deep	learning	methods	that	accurately	predict	various	functional	properties	from	

genomic	 DNA,	 including	 cell	 type-specific	 chromatin	 states	 and	 gene	 expression,	 will	 play	 a	

crucial	role	in	interpreting	the	full	set	of	genetic	variations	in	individual	genomes.	After	training,	

such	 models	 can	 be	 used	 to	 process	 distinct	 alleles	 and	 compare	 predictions	 to	 score	 and	

prioritize	genetic	variants.	This	approach	has	shown	good	results	on	chromatin	prediction	tasks	

but	still	has	a	limited	predictive	value	on	variants	that	impact	gene	expression239.	It	is	possible	

that	this	performance	is	limited	by	current	models	being	trained	on	a	single	Reference	genome,	

and	 that	 training	 on	 personalized	 genomes	 (more	 locus-specific	 data)	 could	 increase	 their	

sensitivity	 in	 predicting	 the	 cellular	 impact	 of	 genetic	 variants	 across	 the	 entire	 genome.	 In	

addition,	current	in-silico	analyses	have	focused	on	predicting	the	effect	of	individual	variants	in	

isolation,	 thus	 not	 accounting	 for	 the	 genetic	 background	 of	 the	 individuals	 and	 potential	

interactions	between	variants165,166,177,184,187,196.	As	the	number	of	personal	genomes	sequenced	

increases,	we	should	move	to	predictions	for	individual-specific	genomes	to	account	for	genetic	

interactions,	even	across	different	biological	mechanisms.	

	

Medical	genomics	

The	future	of	medicine	and	our	understanding	of	the	human	genome	and	cellular	behavior	

will	 likely	 lie	 in	 the	 interface	 between	 single-cell	 omics	 and	 perturbation	 data	 and	 artificial	

intelligence	and	machine	 learning	algorithms.	Combining	these	approaches	to	build	sequence-

based	 predictive	models	 of	 every	 human	 cellular	 state	will	 allow	 to	 interpret	 an	 individual’s	
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genome,	including	susceptibility	to	diseases	and	respective	disease	mechanisms,	thus	providing	

new	 tools	 and	 therapeutics	 for	 personalized	 medicine.	 Together	 with	 the	 emerging	 genome	

editing	technologies,	DeepSTARR-like	and	more	complex	sequence-based	deep	learning	models	

have	the	potential	to	revolutionize	medicine	and	the	future	of	humanity.	
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